Keywords: dura mater, duroplasty, autodrafts, allografts, xenografts, dural substitute


In most cases, a dura mater defect is the result of a traumatic brain injury. Traumatic brain injury is an important issue, both medically and socio-economically, as it is accompanied by significant mortality and disability of patients of working age. Cerebrospinal fluid leakage is one of the most common causes of death in neurosurgical patients. Complications due to depressurization of dura mater and failure to close the defects of the membrane can be: cerebrospinal fluid leakage and cerebrospinal fluid fistula, infections and other complications that can lead to a longer period of hospitalization and treatment costs. Therefore, elimination of the dura mater defect is the most important element of surgical treatment and prevention of many intracranial complications, via preventive medical rehabilitation of neurosurgical patients.

Despite the significant historical experience and practice of neurosurgical clinics, the issue of reliable sealing of defects of the dura mater defect still remains relevant.

Over the past decades, various auto-, allo-, xenografts, and synthetic materials have been tested. Vitro studies investigated into the properties and compared the morphological characteristics of autografts: dura mater, supracranial aponeurosis and temporal fascia, xenografts: materials based on decellularized bovine and porcine pericardium, biomichannel differences between human dura mater, stretched polytetrafluoroethylene and materials made of bovine skin collagen and bovine pericardium.

With the constant progress of chemical technologies, new substitutes for dura mater will be created, and they will be closer in structure to normal dura mater, such that will cause minimal inflammatory reactions or their absence, easy to use and biodegradable.

Thus, the development and comprehensive research, including in-vitro and in-vivo experiments, as well as research on model animals, are an urgent issue of medical and biological nature, which aims to solve the problem of closing defects of dura mater without short-term and long-term postoperative complications and improve the quality of life of patients.

Author Biographies

Anna V. Kravtsova, Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine

Aсистент кафедри нейрохірургії ХНМУ

Е-mail: av.kravtsova@knmu.edu.ua, тел.+38 0509478939, пр. Науки 4, м. Харків, 61022

Volodymyr O. Pyatikop, Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine

Завідувач кафедрою нейрохірургії Харківського національного медичного університету, професор, д.м.н.

Е-mail: vo.pyatikop@knmu.edu.ua, тел. +380503035092, пр. Науки 4, м. Харків, 61022

Yuliya G. Sergiyenko, Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine

Aсистент кафедри нейрохірургії ХНМУ, к.м.н.

Е-mail: yh.serhiienko@knmu.edu.ua, тел. +380509603676, пр. Науки 4, м. Харків, 61022


1. Pedachenko EG. Standartyzatsiia v neirokhirurhii. Chastyna 1. Travmatychni ushkodzhennia tsentralnoi ta peryferychnoi nervovoi systemy [Standardization in neurosurgery. Part 1. Traumatic injuries of the central and peripheral nervous system]. Kyiv: State Institution “INH NAMNU” Publ., 2019. 152 p.
2. Vieira E, Guimarães TC, Faquini IV, et al. Randomized controlled study comparing 2 surgical techniques for decompressive craniectomy: with watertight duraplasty and without watertight duraplasty. J Neurosurg. 2018;129(4):1017-1023.
3. Costa BS, Cavalcanti-Mendes Gde A, de Abreu MS, de Sousa AA. Clinical experience with a novel bovine collagen dura mater substitute. Asian J Neurosurg. 2010;5(2):31-34. PMID: 21537564.
4. Sade B, Oya S, Lee JH. Non-watertight dural reconstruction in meningioma surgery: results in 439 consecutive patients and a review of the literature. Clinical article. J Neurosurg. 2011;114(3):714-718.
5. Yilmaz A, Kanat A, Musluman AM, et al. When is duraplasty required in the surgical treatment of Chiari malformation type I based on tonsillar descending grading scale? World Neurosurg. 2011;75(2):307-313.
6. Parlato C, Granata R, Moraci A, et al. Dural reconstruction in meningioma surgery. In: Monleon D, editor. Meningiomas - management and surgery. InTech; 2012. pp. 103–124.
7. Majdan M, Plancikova D, Brazinova A, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health. 2016;1(2):e76-e83.
8. Sabyrov DM, Rosstalnaia AL, Makhmudov MA. [Epidemiological features of traumatic brain injury]. Vestnyk ekstrennoi medytsyni. 2019;12(2):61-66.
9. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22(5):341-353. PMID: 18162698
10. Andriessen, TMJC, Horn J, Franschman G, van der Naalt J, Haitsma I, Jacobs B, Steyerberg EW. Epidemiology, Severity Classification, and Outcome of Moderate and Severe Traumatic Brain Injury: A Prospective Multicenter Study. Journal of Neurotrauma. 2011;28(10):2019-2031.
11. Silver JM, McAllister TW, Yudofsky SC, editors. Textbook of traumatic brain injury. 2nd ed. Washington, DC: American Psychiatric Pub.; 2011. pp. 3–22.
12. Faul M, Coronado V. Epidemiology of traumatic brain injury. Handb Clin Neurol. 2015;127:3-13.
13. Huk AP. [Traumatic brain injury epidemiology in Ukraine]. Materialy V zizdu neirokhirurhiv Ukrainy [Abstracts Book of the V Congress of Neurosurgeons of Ukraine]. Uzhorod, 2013, p.30. (In Ukrainian).
14. Pedachenko EG, Shlapak IP, Huk AP, Pylypenko MM. (2007) Cherepno-mozkova travma: suchasni pryntsypy nevidkladnoi dopomohi [Traumatic brain injury: modern principles of emergency care, standards of diagnosis and treatment]. Kyiv: VARTA Publ., 2007. 312 p.
15. Ovsyannikov DM, Chekhonatsky AA, Kolesov VN, Bubashvili AI. [Social and Epidemiological Aspects of Craniocerebral Trauma (review)] Saratov Journal of Medical Scientific Research. 2012;8(3):777-785.
16. Kyrychenko AH. [Clinical and epidemiological aspects of primary disability due to traumatic brain injury]. Problemy ekolohyy y medytsyni.2012;16(1-2):30-33.
17. Gulzatyan AA. Plastic defects of the dura mater of the skull base in patients with craniofacial injuries 14.01.18 - neurosurgery. Abstract of the dissertation for the degree of Candidate of Medical Sciences. St. Petersburg. 2017
18. Kalaev AA, Moldavskaia AA, Petrov VV. [Anatomical studies of the dura mater of the brain and its vascular system in humans with severe traumatic brain injury, not aggravated by alcohol history and in conditions of alcohol intoxication]. Astrakhanskyi medytsynskyi zhurnal. 2012;7(4):126-129.
19. Lichterman LB, Potapov AA, Kravchuk AD, Okhlopkov VA. [Clinic and surgery of the consequences of traumatic brain injury]. Consilium Medicum 2014;16(9): 109-118.
20. Beach HHA. Gold foil in cerebral surgery. The Boston Medical and Surgical Journal. 1897;12:281-282.
21. Sharkey PC, Usher FC, Robertson RCL, Pollard C. Lyophilized Human Dura Mater as a Dural Substitute. Journal of Neurosurgery. 1958;15(2):192-198.
22. Danylova DA, Horbunova LY, Tsibusov SN, Uspenskyi YV, Kravets LIa. [Materials for plastic surgery of dura mater: history and current state of the problem (review)]. Sovremennie tekhnolohyy v medytsyne. 2018;10(3):194-203.
23. Abbe R. Rubber tissue for meningeal adhesions. Trans Amer Surg Ass. 1895;13: 490-491.
24. Zanaty M, Chalouhi N, Starke RM, Clark SW, Bovenzi CD, Saigh M, et al. Complications following cranioplasty: incidence and predictors in 348 cases. J Neurosurg. 2015;123:182–188.
25. Azzam D, Romiyo P, Nguyen T, Sheppard JP, Alkhalid Y, Lagman C, Prashant GN, Yang I. Dural repair in cranial surgery is associated with moderate rates of complications with both autologous and nonautologous dural substitutes. World Neurosurg. 2018;113:244–248.
26. Kakhkharov RA, Flegontov AN, Mokhov NV. Using different duraplasty variants in the treatment of patients with Chiari malformation type I. Bulletin of Russian State Medical University 2016;4:56–61.
27. Sabatino G, Della Pepa GM, Bianchi F, Capone G, Rigante L, Albanese A,et al. Autologous dural substitutes: a prospective study. Clin Neurol Neurosurg. 2014; 116:20–23.
28. Lee JH, Choi SK, Kang SY. Reconstruction of chronic complicated scalp and dural defects using acellular human dermis and latissimus dorsi myocutaneous free flap. Arch Craniofac Surg. 2015;16(2):80–83.
29. Gaivoronsky AI, Kondakov EN, Svitov DV, Gulyaev DA. Operatyvnыe dostupi v neirokhyrurhyy. Tom 1. [Operative approaches in neurosurgery. Volume 1]. St. Petersburg: SpetsLit Litres Publ., 2017.
30. Yazdani N, Khorsandi-Ashtiani MT, Tashakorinia H, Anari MR, Mikaniki N. Cerebrospinal fluid leakage during temporal bone surgery: selecting intra-operative dural closure with a Dumbbell-shaped muscle graft as a surgical approach. Indian J Otolaryngol Head Neck Surg. 2018;70(1):92–97.
31. Lam FC, Kasper E. Augmented autologous pericranium duraplasty in 100 posterior fossa surgeries--a retrospective case series. Neurosurgery. 2012;71(2):302-307.
32. Brock RS, dos Santos JGRP, Taricco MA, de Oliveira M F, de Lima Oliveira M, Teixeira M J, Bor-Seng-Shu E. Dural Closure in Chiari I Malformation. Technique Description and Analysis of Results. JBNC-Jornal Brasileiro de Neurocirurgia. 2017;28(2):18-21
33. Sale D, Kache SA, Obadaki AM, Johnson A, Aghadi IK. Compound Elevated Skull Fracture: A Report of Two Cases and Literature Review. Journal of Surgery. 2017:5(4):68-71.
34. Ahmed M K, Ehab A A, Hanan H. Surgical Management of Chiari Malformation Type One in Adults. Tech Neurosurg Neurol. 2018;1(3):1-6.
35. Perrini P. Technical nuances of autologous pericranium harvesting for dural closure in Chiari malformation surgery. J Neurol Surg B Skull Base. 2015;76(2):90-93..
36. Ito H, Kimura T, Sameshima T, Aiyama H, Nishimura K, Ochiai C, et al. Reinforcement of pericranium as a dural substitute by fibrin sealant. Acta Neurochir (Wien). 2011;153:2251-2254.
37. Giovanni S, Della Pepa GM, La RG, Lofrese G, Alba-nese A, Maria G, et al. Galea-pericranium dural closure: can we safely avoid sealants? Clin Neurol Neuro-surg. 2014;123:50-54.
38. Almelesy A. Collagen Matrix Dural Substitute versus Auto-graft in Endoscopic Endonasal Sellar Reconstruction. Al-Azhar International Medical Journal. 2020; 1(3):54-57.
39. Iqbal AK, Asim B, Samia S, Sajjad AP. Use of Large Fascia Lata Graft as Dural Substitute in Neurosurgical Procedures at Neurosurgery Department Teaching Hospital D G Khan J. of Neurol. Surg. 2017;21(2):109-115
40. Okochi Masayuki, Momiyama Masanori, Horikiri Masaru, Ueda Kazuku. Scalp and Dura Matter Complex Reconstruction Using Free Anterolateral Thigh Flap with Vascularized Fascia. Surgical Science. 2016;7:137-143.
41. Girod A, Boissonnet H, Jouffroy T, Rodriguez J. Latissimus dorsi free flap reconstruction of anterior skull base defects. J Craniomaxillofac Surg. 2012;40(2): 177–179.
42. Soon Sung K, Hak C. Staged reconstruction of infected dura mater using vascularized rectus abdominis muscle. J Craniofac Surg. 2012;23(6):1741–1743.
43. Dlouhy BJ, Menezes AH. Autologous cervical fascia duraplasty in 123 children and adults with Chiari malformation type I: surgical technique and complications. J Neurosurg Pediatr. 2018;22(3):297-305.
44. Di Vitantonio H, De Paulis D, Del Maestro M, Ricci A, Dechordi SR, Marzi S, Millimaggi DF, Galzio RJ. Dural repair using autologous fat: Our experience and review of the literature. Surg Neurol Int. 2016;7(16):463-468.
45. Kumar S, Nair R, Maddukuri S, Hasan R. Migrated autologous fat graft presenting as a ring enhancing lesion of brain: A novel complication of endoscopic transnasal duroplasty for posttraumatic cerebrospinal fluid rhinorrhoea. Neurology India. 2015;63:958-960.
46. Ricaurte JC, Murali R, Mandell W. Uncomplicated postoperative lipoid meningitis secondary to autologous fat graft necrosis. Clin Infect Dis. 2000;30(3):613-615.
47. Hwang PH, Jackler RK. Lipoid meningitis due to aseptic necrosis of a free fat graft placed during neurotologic surgery. Laryngoscope. 1996;106(12):1482-1486.
48. Vanaclocha V, Saiz-Sapena N. Duraplasty with freeze-dried cadaveric dura versus occipital pericranium for Chiari type I malformation: Comparative study. Acta neurochir. 1997;139:112–119.
49. Aguzzi A. Prion diseases of humans and farm animals: epidemiology, genetics, and pathogenesis. Jornal of neurochemistry. 2006;97(6):1726-1733
50. Kobayashi A, Matsuura Y, Mohri S. et al. Distinct origins of dura mater graft-associated Creutzfeldt-Jakob disease: past and future problems. Acta Neuropathol. 2014;2:32.
51. Ae R, Hamaguchi T, Nakamura Y, et al. Update: Dura Mater Graft–Associated Creutzfeldt-Jakob Disease – Japan, 1975–2017. MMWR Morb Mortal Wkly Rep 2018;67:274–278.
52. Rappaport EB. Iatrogenic Creutzfeldt-Jakob disease. Neurology. 1987;37:1520-1522.
53. Brown P, Brandel JP, Sato T, Nakamura Y, MacKenzie J, Will RG, et al. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg Infect Dis. 2012;18:901-907.
54. Bonda DJ, Manjila S, Mehndiratta P, et al. Human prion diseases: surgical lessons learned from iatrogenic prion transmission. Neurosurg Focus. 2016;41(1):E10.
55. Kim HL, Do JY, Cho HJ, Jeon YC, Park SJ, Ma HI, et al. Dura mater graft-associated Creutzfeldt-Jakob disease: the first case in Korea. J Korean Med Sci 2011;26:1515-1517.
56. Triendl R. CJD link prompts ban on brain tissue use. Nature 1997;387:5.
57. Tanaka S, Fukushima M. Size of Creutzfeldt-Jakob disease epidemic associated with cadaveric dura transplantation. Neuroepidemiology. 2010; 34: 232-237.
58. Tomita T, Hayashi N, Okabe M, Yoshida T, Hamada H, Endo S, et al. New dried human amniotic membrane is useful as a substitute for dural repair after skull base surgery. J. Neurol. Surg. B Skull. Base. 2012;73:302–327.
59. Eichberg DG, Ali SC, Buttrick SS, Komotar RJ. The use of dehydrated amniotic membrane allograft for augmentation of dural closure in craniotomies and endoscopic endonasal transphenoidal surgeries Br. J. Neurosurg. 2018;32:516-520.
60. Eichberg DG, Richardson AM, Brusko GD et al. The use of dehydrated amniotic membrane allograft for augmentation of dural repair in transsphenoidal endoscopic endonasal resection of pituitary adenomas. Acta Neurochir. 2019;161:2117-2122.
61. Turchan A, Rochman TF, Ibrahim A, Fauziah D, Wahyuhadi J, Parenrengi MA, Fauzi AA, et al. Duraplasty using amniotic membrane versus temporal muscle fascia: a clinical comparative study. J. Clin. Neurosci. 2018;50:272-276
62. Tork T, Jefferson RC, Janis JE. Acellular Dermal Matrices: Applications in Plastic Surgery. Semin Plast Surg. 2019;33:173–184.
63. Masang Ban H, Faried A, Laurens JT, Fuad WF, Zafrullah AM. (2020). The ideal selection criteria for duraplasty material in brain surgery: A review. Interdisciplinary Neurosurgery. 2020;22:100800.
64. George BR Jr, Ning B, Salopek LS, et al. Advanced imaging techniques for investigation of acellular dermal matrix biointegration. Plast Reconstr Surg 2017;139(02):395–405.
65. Shridharani SM, Tufaro AP. A systematic review of acelluar dermal matrices in head and neck reconstruction. Plast Reconstr Surg. 2012;130(5):35-43.
66. Warren WL, Medary MB, Dureza CD, et al. Dural repair using acellular human dermis: experience with 200 cases: technique assessment. Neurosurgery. 2000;46(06):1391–1396.
67. Costantino PD, Wolpoe ME, Govindaraj S, Chaplin, J, Sen C, Cohen M and Gnoy A. (2000) Human Dural Replacement with Acellular Dermis: Clinical Results and Review of the Literature. Head and Neck. 2000;22:765-771.
68. Germani RM, Vivero R, Herzallah IR, Casiano RR. Endoscopic reconstruction of large anterior skull base defects using acellular dermal allograft. Am J Rhinol. 2007;21(05):615–618.
69. Singh M, Ricci JA, Dunn IF, Caterson EJ. AlloDerm covering over titanium cranioplasty may minimize contour deformities in the frontal bone position. J Craniofac Surg. 2016;27(05):1292–1294.
70. Park JY, Lee TG, Kim JY, Lee MC, Chung YK, Lee WJ. Acellular Dermal Matrix to Treat Full Thickness Skin Defects: Follow-Up Subjective and Objective Skin Quality Assessments. Arch Craniofac Surg. 2014;15(1):14-21.
71. Anson JA, Marchand EP. Bovine pericardium for dural grafts: clinical results in 35 patients. Neurosurgery. 1996; 39:764-768.
72. MacEwan MR, Kovacs T, Osbun J, Ray WZ. Comparative analysis of a fully-synthetic nanofabricated dura substitute and bovine collagen dura substitute in a large animal model of dural repair. Interdiscip Neurosurg. 2018;13:145–150.
73. Sun H, Wang H, Diao Y, Tu Y, Li X, Zhao W, et al. Large retrospective study of artificial dura substitute in patients with traumatic brain injury undergo decompressive craniectomy. Brain Behav. 2018;8(5):e00907.
74. Centonze R, Agostini E, Massaccesi S, Toninelli S, Morabito L. A novel equine-derived pericardium membrane for dural repair: A preliminary, short-term investigation. Asian J Neurosurg. 2016;11(3):201-205.
75. Seo Y, Kim JW, Dho YS, Chowdhury T, Kim S, & Park CK. Evaluation of the safety and effectiveness of an alternative dural substitute using porcine pericardium for duraplasty in a large animal model. Journal of Clinical Neuroscience. 2018;58:187-191.
76. Zouhair S, Dal Sasso E, Tuladhar SR, Fidalgo C, Vedovelli L, Filippi A, et al. A comprehensive comparison of bovine and porcine decellularized pericardia: New insights for surgical applications. Biomolecules. 2020;10(3):371.
77. Norrby E. Prions and protein-folding diseases: Review: Prions and protein-folding diseases. J Intern Med. 2011;270(1):1–14.
78. Maizato M, Higa O, Mathor M, Camillo M, Spencer P, Pitombo R, Zavaglia C, Leirner A. Glutaraldehyde‐treated Bovine Pericardium: Effects of Lyophilization on Cytotoxicity and Residual Aldehydes. Artificial Organs. 2003;27:692 - 694.
79. Costa BS, Cavalcanti-Mendes Gde A, de Abreu MS, de Sousa AA. Clinical experience with a novel bovine collagen dura mater substitute. Asian J Neurosurg. 2010;5(2):31-4.
80. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12):a005058–a005058.
81. Pan T, Tao J, Meng Q, Zhao W, Song B, Qi S. Importance of the free amine groups in acellular scaffold during tissue repairing or regeneration process. Journal of Biomaterials Applications. 2019;34(1):25-35.
82. Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online. 2019;18(1):24.
83. Zerris VA, James KS, Roberts JB, Bell E, Heilman CB. Repair of the dura mater with processed collagen devices. J Biomed Mater Res B Appl Biomater. 2007;83B(2):580–588.
84. Parlato C, di Nuzzo G, Luongo M, Parlato RS, Accardo M, Cuccurullo L, Moraci A. Use of a collagen biomatrix (TissuDura) for dura repair: A long-term neuroradiological and neuropathological evaluation. Acta Neurochir (Wien). 2011;153(1):142-147.
85. Cole PD, Stal D, Sharabi SE, Hicks J, Hollier LH Jr. A comparative, long-term assessment of four soft tissue substitutes. Aesthet Surg J. 2011;31(6):674–681.
86. Wise DM. Histologic proof that acellular dermal matrices (ADM)--Enduragen, DermaMatrix, and DuraMatrix--are not repopulated or nonviable and that AlloDerm may be repopulated but degraded synchronously. Aesthet Surg J. 2012;32(3):355–358.
87. Kaplan M, Akgun B, Demirdag K, Akpolat N, Kozan SK, Cagasar O, Yakar H. Use of antibiotic - impregnated DuraGen® to reduce the risk of infection in dura repair: an in vitro study. Cent Eur Neurosurg. 2011;72(2):75-77.
88. Kim DW, Eum WS, Jang SH, Park J, Heo D-H, Sheen S-H, et al. A transparent artificial dura mater made of silk fibroin as an inhibitor of inflammation in craniotomized rats: Laboratory investigation. J Neurosurg. 2011;114(2):485–490
89. Terasaka S, Taoka T, Kuroda S, Mikuni N, Nishi T, Nakase H, et al. Efficacy and safety of non-suture dural closure using a novel dural substitute consisting of polyglycolic acid felt and fibrin glue to prevent cerebrospinal fluid leakage–A non-controlled, open-label, multicenter clinical trial. J Mater Sci Mater Med. 2017;28(5):69.
90. Hutter G, von Felten S, Sailer MH, Schulz M, Mariani L. Risk factors for postoperative CSF leakage after elective craniotomy and the efficacy of fleece-bound tissue sealing against dural suturing alone: a randomized controlled trial. J Neurosurg. 2014;121(3):735–744.
91. Salgado CL, Sanchez EMS, Zavaglia CAC, Granja PL. Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels. J Biomed Mater Res A. 2012;100A(1):243–251.
92. Rosen CL, Steinberg GK, DeMonte F, Delashaw JB Jr, Lewis SB, Shaffrey ME, et al. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery. 2011;69(5):1093–103.
93. Yoshioka N. Cranial reconstruction following the removal of an infected synthetic dura mater substitute. Plast Reconstr Surg Glob Open 2014;2(4):e134.
94. Matsumoto Y., Aikawa H., Tsutsumi M., Narita S., Yoshida H., Etou H., Sakamoto K., Kazekawa K. Histological examination of expanded polytetrafluoroethylene artificial dura mater at 14 years after craniotomy. Neurol Med Chir (Tokyo) 2013; 53(1):43–46.
95. Tikhomirov SE, Tsybusov SN, Kravets LJ, Fraerman AP, Balmasov AA. [Plastic surgery of defects of the calvaria and dura mater with a new polymeric material Reperen]. Sovremennie tekhnolohyy v medytsyne. 2010;2:6-11.
96. Treushnikov VM, Viktorova EA. [Fundamentals of creating biocompatible and biostable polymer implants (review)]. Sovremennie tekhnolohyy v medytsyne. 2015;7(3):149-171.
97. Lipsa R, Tudorachi N, Vasile C. Poly(α-hydroxyacids) in biomedical applications: synthesis and properties of lactic acid polymers. E-polymers. 2010;10(1):461-471.
98. Hemstapat R, Suvannapruk W, Thammarakcharoen F, Chumnanvej S, Suwanprateeb J. Performance evaluation of bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composites for dural substitution. Proc Inst Mech Eng H. 2020;234(8):854–863.
99. Suwanprateeb J, Luangwattanawilai T, Theeranattapong T, Suvannapruk W, Chumnanvej S, Hemstapat W. Bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composite for use as an artificial dural substitute. J Mater Sci Mater Med. 2016;27(7):122.
100. Chumnanvej S, Luangwattanawilai T, Rawiwet V, Suwanprateeb J, Rattanapinyopituk K, Huaijantug S, et al. In vivo evaluation of bilayer ORC/PCL composites in a rabbit model for using as a dural substitute. Neurol Res. 2020;42(10):879-889.
101. Bai W, Wang X, Yuan W, et al. Application of PLGA/type I collagen/chitosan artificial composite dura mater in the treatment of dural injury. J Mater Sci: Mater Med. 2013;24: 2247–2254.
102. Morales-Avalos R, Soto-Domínguez A, García-Juárez J. et al. Characterization and morphological comparison of human dura mater, temporalis fascia, and pericranium for the correct selection of an autograft in duraplasty procedures. Surg Radiol Anat. 2017;39:29–38.
103. Kizmazoglu C, Aydin HE, Kaya I, Atar M, Husemoglu B, Kalemci O, Sozer G, Havitcioglu H. Laboratory Investigation Comparison of Biomechanical Properties of Dura Mater Substitutes and Cranial Human Dura Mater: An In Vitro Study. J. Korean Neurosurg Soc. 2019;62:635–642.
104. Tahami SA, Afshar-Fereydonian N, Kazemi F, Taheri M. Comparing the results of duraplasty using amniotic membrane versus pericranium as dural graft; concerning CSF leakage and pseudomeningocele. Br J Neurosurg. 2020 Feb;34(1):51-54.
105. Mello LR, Alcantara BB, Bernardes CI, Boer VH. Late favorableresults of duroplasty with biocellulose: Clinical retrospective studyof 20 cases. Arq Bras Neurocir. 2012;31(3):128-134
How to Cite
Anna V. Kravtsova, Volodymyr O. Pyatikop, & Yuliya G. Sergiyenko. (2022). DUROPLASTY: REVIEW OF MATERIALS AND TECHNIQUES. Eastern Ukrainian Medical Journal, 10(1), 1-16. https://doi.org/10.21272/eumj.2022;10(1):1-16