STEM CELL TECHNOLOGY IN PERIPHERAL NERVE RESTORATION

  • Petriv T. I. SI "Romodanov Institute of Neurosurgery of National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • Tsymbalyuk Y. V. SI "Romodanov Institute of Neurosurgery of National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • Potapov O. O. Medical Institute of Sumy State University, Sumy, Ukraine
  • Kvasnitsʹkyy M. V. SNI "Scientific and Practical Center for Preventive and Clinical Medicine" of the State Administration, Kyiv, Ukraine
  • Honcharuk O. O. Higher Educational Institution “International Academy of Ecology and Medicine”, Kyiv, Ukraine
  • Tatarchuk M. M. SI "Romodanov Institute of Neurosurgery of National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
Keywords: Peripheral nerve injury, stem cells, biopolymers, tissue engineering, experiment

Abstract

Peripheral nerve injuries are significant problem in the medical and socio-economic plan, as they are accompanied by a high incidence of disability by people of working age.

In recent decades, significant progress has been made in the restorative surgery of the peripheral nervous system, in particular through the introduction into clinical practice of microsurgical techniques. However, the problem of restoring the peripheral nerve after its traumatic injury has not been resolved yet.

Review article addresses the current state of developing stem cell technologies for peripheral nerve repair. Basic concepts of peripheral nerve regeneration after traumatic injury, methods of their restoration in experimental and clinic conditions are considered. The prospect of using stem cells of different origins is shown in the experiment by many authors, and the positive effect of stem cells on peripheral nerve regeneration is explained by their ability to secrete many trophic factors and differentiation to a neural phenotype. An essential issue in the tissue engineering approach is the choice of the optimal material to be used as a scaffold for large size peripheral nerve defects grafting.

The article focuses on the main types of stem cells, as well as their combinations with biopolymers, which have shown efficiency in the experiment. Despite the advances in the use of the latest technologies, the search for the necessary components is underway to provide the most favorable conditions for peripheral nerve regeneration in the clinic.

Downloads

Download data is not yet available.

Author Biographies

Petriv T. I., SI "Romodanov Institute of Neurosurgery of National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine

PhD (Medicine), Neurosurgeon at the Department of Reconstructive Neurosurgery with X-ray surgery (e-mail: petrivtaras@gmail.com)

Tsymbalyuk Y. V., SI "Romodanov Institute of Neurosurgery of National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine

Holder of Habilitation degree in Medicine, Neurosurgeon at the Department of Reconstructive Neurosurgery with X-ray surgery

Potapov O. O., Medical Institute of Sumy State University, Sumy, Ukraine

Holder of Habilitation degree in Medicine , Professor, Head of the Department of Neurology and Neurosurgery

Kvasnitsʹkyy M. V., SNI "Scientific and Practical Center for Preventive and Clinical Medicine" of the State Administration, Kyiv, Ukraine

Holder of Habilitation degree in Medicine, Professor, Chief Scientific Officer at Scientific Department of Minimal Intervention Surgery

Honcharuk O. O., Higher Educational Institution “International Academy of Ecology and Medicine”, Kyiv, Ukraine

Holder of Habilitation degree in Medicine, Professor, Head of the Department of Surgery

Tatarchuk M. M., SI "Romodanov Institute of Neurosurgery of National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine

PhD (Medicine), Neurosurgeon at the Department of Reconstructive Neurosurgery with X-ray surgery

References

Torres RY, Miranda GE. Epidemiology of Traumatic Peripheral Nerve Injuries Evaluated by Electrodiagnostic Studies in a Tertiary Care Hospital Clinic. P R Health Sci J. 2016;35(2):76-80. PMID: 27232868

Puzović V, Samardzić M, Jovanović M, Zivković B, Savić A, Rasulić L. Etiology and mechanisms of ulnar and median forearm nerve injuries. Vojnosanitetski Pregled. 2015;72(11):961-7. PMID: 26731969

Tsymbaliuk VI, Strafun SS, Haiko OG, Gaiovych VV. [The concept of limb function recovery in traumatic injury of peripheral nerves]. Ukrainian neurosurgical journal. 2016;(3):48-54.

Tsymbaliuk VI, Mogila VV, Nicholas ZhI. [Principles of surgical treatment of traumatic lesions of the median nerve at different levels]. Ukr Med Chasopis. 2005;47(3):64-8.

Rasulić L, Puzović V, Rotim K, Jovanović M, Samardžić M, Živković B, et al. The epidemiology of forearm nerve injuries – a retrospective study. Acta Clinica Croatica. 2015;54(1):19-24. PMID: 26058238

Jonsson S, Wiberg R, McGrath AM, Novikov LN, Wiberg M, Novikova LN, et al. Effect of Delayed Peripheral Nerve Repair on Nerve Regeneration, Schwann Cell Function and Target Muscle Recovery. PLoS ONE. 2013;8(2): e56484. doi: 10.1371/journal.pone.0056484.

Belanger K, Dinis TM, Taourirt S, Vidal G, Kaplan DL, Egles C. Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration. Macromol Biosci. 2016;16(4):472-81. doi: 10.1002/mabi.201500367

Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World J Stem Cells. 2015;7(1):11-26. doi: 10.4252/wjsc.v7.i1.11

Griffin JW, Hogan MV, Chhabra AB, Deal DN. Peripheral nerve repair and reconstruction. J Bone Joint Surg Am. 2013;95(23):2144-51. doi: 10.2106/JBJS.L.00704

Hansen C, Dinis TM, Vidal G, Ben-Mansour K, Bresson D, Egles C, et al. In-vivo analysis of nerve regeneration after sciatic nerve injury in a rat model. International Biomechanics. 2016;3(1):57-65. DOI: 10.1080/23335432.2016.1233077

Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev. 2015;82-83:160-7. doi: 10.1016/j.addr.2014.11.010

Tsymbaliuk VI, Tretyak IB, Gatsky OO. [The research of sciatic nerve combined plastics efficiency at it’s large defect by it’s functional recovery quantification in rats in experiment]. Ukrainian neurosurgical journal. 2012;(3):48-51.

Tsymbalyuk VI, Tretyak IB, Gatsky OO, Vernygorodskyj SV. [Morphometric evaluation of efficacy of modified nerve guidance tubes at bridging large rat sciatic nerve gap: experimental study]. Ukrainian neurosurgical journal. 2013;(1):32-9.

Sebben AD, Lichtenfels M, Braga da Silva JL. Peripheral nerve regeneration: cell therapy and neurotrophic factors. Rev Bras Ortop. 2011;46(6):643-9. doi: 10.1016/S2255-4971(15)30319-0

Seidel MF, Wise BL, Lane NE. Nerve growth factor: an update on the science and therapy. Osteoarthritis Cartilage. 2013;21(9):1223-8. doi: 10.1016/j.joca.2013.06.004

Gómez-Palacio-Schjetnan A, Escobar ML. Neurotrophins and synaptic plasticity. Neurogenesis and neural plasticity. In: Belzung C, Wigmore P, eds. Neurogenesis and Neural Plasticity. Springer; 2013. Current Topics in Behavioral Neurosciences. Vol.15. p.117-136. doi: 10.1007/7854_2012_231

Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol. 2014;9(2):168-81. doi: 10.1007/s11481-013-9479-z

Ramburrun P, Kumar P, Choonara YE, Bijukumar D, du Toit LC, Pillay V. A review of bioactive release from nerve conduits as a neurotherapeutic strategy for neuronal growth in peripheral nerve injury. BioMed Research International. Vol.2014, Article ID 132350, 19 pages, 2014. doi: 10.1155/2014/132350.

Godinho MJ, Teh L, Pollett MA, Goodman D, Hodgetts SI, Sweetman I, et al. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3. PLoS One. 2013;8(8):e69987. doi: 10.1371/journal.pone.0069987

Zhang Y, Zhang H, Katiella K, Huang W. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair. Neural Regen Res. 2014;9(14):1358-64. doi: 10.4103/1673-5374.137588. PubMed PMID: 25221592; PubMed Central PMCID: PMC4160866

Liu G-Y, Jin Y, Zhang Q, Li R. Peripheral nerve repair: a hot spot analysis on treatment methods from 2010 to 2014. Neural Regen Res. 2015;10(6):996-1002. doi: 10.4103/1673-5374.158368. PMID: 26199620; PMCID: PMC4498365

Whitlock EL, Tuffaha SH, Luciano JP, Yan Y, Hunter DA, Magill CK, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787-99. doi: 10.1002/mus.21220. PubMed PMID: 19291791

Paczkowska E, Kaczyńska K, Pius-Sadowska E, Rogińska D, Kawa M, Ustianowski P, Safranow K, et al. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders. PLoS One. 2013;8(12):e83833. doi: 10.1371/journal.pone.0083833. eCollection 2013. PubMed PMID: 24391835; PubMed Central PMCID: PMC3877125

Battiston B, Titolo P, Ciclamini D, Panero B. Peripheral Nerve Defects: Overviews of Practice in Europe. Hand Clin. 2017;33(3):545-550. doi: 10.1016/j.hcl.2017.04.005. Review. PubMed PMID: 28673630

Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26(2):151-60. Review. doi: 10.1179/016164104225013798. PubMed PMID: 15072634

Brooks DN, Weber RV, Chao JD, Rinker BD, Zoldos J, Robichaux MR, et al. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery. 2012;32(1):1-14. doi: 10.1002/micr.20975. PubMed PMID: 22121093

Kim BS, Yoo JJ, Atala A. Peripheral nerve regeneration using acellular nerve grafts. J Biomed Mater Res A. 2004;68(2):201-9. doi: 10.1002/jbm.a.10045. PubMed PMID: 14704961

Ikegami Y, Ijima H. Development of heparin-conjugated nanofibers and a novel biological signal by immobilized growth factors for peripheral nerve regeneration. Journal of Bioscience and Bioengineering, 2020;129(3):354-362

Pabari A, Yang SY, Seifalian AM, Mosahebi A. Modern surgical management of peripheral nerve gap. J Plast Reconstr Aesthet Surg. 2010;63(12):1941-8. doi: 10.1016/j.bjps.2009.12.010. PMID: 20061198

Birch R. Nerve Repair. In: Wolfe S, Pederson W, Kozin SH. Green’s Operative Hand Surgery. 6th ed. Philadelphia; 2011p.1035-1074.

Zolotov AS, Pak OY. [K voprosu ob istoryi xirurgycheskix operacyj pry raneniyax peryferycheskych nervov]. Travmatologiya i ortopediya Rossii. 2013;(3):162-166.

Gatsky OO. [Kombinovana plastyka peryferychnych nerviv pry jich velykyx defektax (eksperymentalne doslidzhennya) [dysertaciya]. Kyiv: In-t nejrochirurgiyi im. A.P. Romodanova NAMN Ukraine; 2015. p23.

Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43(5):553-72. doi: 10.1016/j.injury.2010.12.030

Safa B, Buncke G. Autograft Substitutes: Conduits and Processed Nerve Allografts. Hand Clin. 2016;32(2):127-40. doi: 10.1016/j.hcl.2015.12.012. Review. PubMed PMID: 27094886

Yan Y, MacEwan MR, Hunter DA, Farber S, Newton P, Tung TH, et al. Nerve regeneration in rat limb allografts: evaluation of acute rejection rescue. Plast Reconstr Surg. 2013;131(4):499e-511e. doi: 10.1097/PRS.0b013e31828275b7. PubMed PMID: 23542267; PubMed Central PMCID: PMC3613760

García-Medrano B, Mesuro Domínguez N, Simon Perez C, Garrosa García M, Gayoso del Villar S, Mayo Íscar A, et al. Repair of nerve injury by implanting prostheses obtained from isogenic acellular nerve segments. Revista Española de Cirugía Ortopédica y Traumatología (English Edition). 2017;61(5):359-366. doi: 10.1016/j.recote.2017.08.011

Neubauer D, Graham JB, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol. 2007;207(1):163-70. doi:10.1016/j.expneurol.2007.06.006. PMID: 17669401; PMCID: PMC2956445

Gunn S, Cosetti M, Roland JT Jr. Processed allograft: novel use in facial nerve repair after resection of a rare racial nerve paraganglioma. Laryngoscope. 2010;120(4):S206. doi: 10.1002/lary.21674. PubMed PMID: 21225804

Karabekmez FE, Duymaz A, Moran SL. Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand. Hand (NY). 2009 Sep;4(3):245-9. doi: 10.1007/s11552-009-9195-6. PubMed PMID: 19412640; PubMed Central PMCID: PMC2724628

Braga Silva J, Marchese GM, Cauduro CG, Debiasi M. Nerve conduits for treating peripheral nerve injuries: A systematic literature review. Hand Surg Rehabil. 2017;36(2):71-85. doi: 10.1016/j.hansur.2016.10.212. PubMed PMID: 28325431

Mackinnon SE, Dellon AL. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast Reconstr Surg. 1990;85(3): 419-24. PMID:2154831. doi: 10.1097/00006534-199003000-00015

Costa MP, Teixeira NH, Longo MV, Gemperli R, Costa HJ. Combined polyglycolic acid tube and autografting versus autografting or polyglycolic acid tube alone. A comparative study of peripheral nerve regeneration in rats. Acta Cirurgica Brasileira. 2015;30(1):46-53. doi: 10.1590/S0102-86502015001000006. PubMed PMID:25627270

Konofaos P, Ver Halen JP. Nerve repair by means of tubulization: past, present, future. J Reconstr Microsurg. 2013;29(3):149-64. doi: 10.1055/s-0032-1333316. PMID: 23303520

Krarup C, Archibald SJ, Madison RD. Factors that influence peripheral nerve regeneration: an electrophysiological study of the monkey median nerve. Ann Neurol. 2002;51(1):69-81. PubMed PMID:11782986

Rodríguez FJ, Verdú E, Ceballos D, Navarro X. Nerve guides seeded with autologous schwann cells improve nerve regeneration. Exp Neurol. 2000;161(2):571-84. PubMed PMID: 10686077. DOI: 10.1006/exnr.1999.7315

Benga A, Zor F, Korkmaz A, Marinescu B, Gorantla V. The neurochemistry of peripheral nerve regeneration. Indian J Plast Surg. 2017;50(1):5-15. doi: 10.4103/ijps.IJPS_14_17. PubMed PMID: 28615804; PubMed Central PMCID: PMC5469235

Rbia N, Shin AY. The Role of Nerve Graft Substitutes in Motor and Mixed Motor/Sensory Peripheral Nerve Injuries. J Hand Surg Am. 2017;42(5):367-377. doi: 10.1016/j.jhsa.2017.02.017. PMID: 28473159

Lui H, Vaquette C, Bindra R. Tissue Engineering in Hand Surgery: A Technology Update. J Hand Surg Am. 2017;42(9):727-735. doi: 10.1016/j.jhsa.2017.06.014. PMID: 28751113

Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK. Biomaterials and cells for neural tissue engineering: Current choices. Mater Sci Eng C Mater Biol Appl. 2017;77:1302-15. doi: 10.1016/j.msec.2017.03.264. PMID: 28532008

Wang EW, Zhang J, Huang JH. Repairing peripheral nerve injury using tissue engineering techniques. Neural Regen Res. 2015;10(9):1393-4. doi: 10.4103/1673-5374.165501. PMID: 26604891; PMCID: PMC4625496

Gao Y, Wang YL, Kong D, Qu B, Su XJ, Li H, et al. Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: a 5-year bibliometric analysis. Neural Regen Res. 2015;10(6):1003-8. doi: 10.4103/1673-5374.158369. PMID: 26199621; PMCID: PMC4498331.

Jones S, Eisenberg HM, Jia X. Advances and Future Applications of Augmented Peripheral Nerve Regeneration. Int J Mol Sci. 2016;17(9). pii: E1494. doi: 10.3390/ijms17091494. Review. PubMed PMID: 27618010; PubMed Central PMCID: PMC5037771

Jiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci. 2017;18(1):94. doi: 10.3390/ijms18010094. PMID: 28067783; PMCID: PMC5297728

Sullivan R, Dailey T, Duncan K, Abel N, Borlongan CV. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer. Int J Mol Sci. 2016;17(12):2101. doi: 10.3390/ijms17122101. PMID: 27983642; PMCID: PMC5187901

Walsh S, Midha R. Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus. 2009;26(2):E2. doi: 10.3171/FOC.2009.26.2.E2. PMID: 19435443

Culme-Seymour EJ, Davies JL, Hitchcock J, Mason J, Carpenter MK, Mason C. Cell Therapy Regulatory Toolkit: an online regulatory resource. Regen Med. 2015;10(5):531-4. doi: 10.2217/rme.15.33. PMID: 26237697

Grochmal J1, Midha R. Recent advances in stem cell-mediated peripheral nerve repair. Cells Tissues Organs. 2015;200(1):13-22. doi: 10.1159/000369450. PMID: 25825283

Hundepool CA, Nijhuis TH, Mohseny B, Selles RW, Hovius SE. The effect of stem cells in bridging peripheral nerve defects: a meta-analysis. J Neurosurg. 2014;121(1):195-209. doi: 10.3171/2014.4.JNS131260. PubMed PMID: 24816327

Nijhuis TH, Bodar CW, van Neck JW, Walbeehm ET, Siemionow M, Madajka M, et al. Natural conduits for bridging a 15-mm nerve defect: comparison of the vein supported by muscle and bone marrow stromal cells with a nerve autograft. J Plast Reconstr Aesthet Surg. 2013;66(2):251-9. doi: 10.1016/j.bjps.2012.09.011. PubMed PMID: 23063384.

Sverdlov ED, Mineev K. Mutation rate in stem cells: an underestimated barrier on the way to therapy. Trends Mol Med. 2013;19(5):273-80. doi: 10.1016/j.molmed.2013.01.004. Review. PubMed PMID: 23481596

Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, et al. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death & Disease. 2013;4(12):e950. doi: 10.1038/cddis.2013.480.

Dąbrowska AM, Skopiński P. Stem cells in regenerative medicine – from laboratory to clinical application – the eye. Cent Eur J Immunol. 2017;42(2):173-180. doi: 10.5114/ceji.2017.69360. PMID: 28860936. PMCID: PMC5573891.

Hakki SS, Turaç G, Bozkurt SB, Kayis SA, Hakki EE, Şahin E, et al. Comparison of Different Sources of Mesenchymal Stem Cells: Palatal versus Lipoaspirated Adipose Tissue. Cells Tissues Organs. 2017;204(5-6):228-240. doi: 10.1159/000478998

Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37(1):115-25. doi: 10.3892/ijmm.2015.2413. PMID: 26719857 PMCID: PMC4687432

Macrin D, Joseph JP, Pillai AA, Devi A. Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev. 2017;13(6):741-756. doi: 10.1007/s12015-017-9759-8. PMID: 28812219

Lynch K, Pei M. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis. 2014;10(3):289-98. doi: 10.4161/15476278.2014.970089. Review. PubMed PMID: 25482504; PubMed Central PMCID: PMC4594597

Chen J, Zhang D, Li Q, Yang D, Fan Z, Ma D, et al. Effect of different cell sheet ECM microenvironment on the formation of vascular network. Tissue Cell. 2016;48(5):442-51. doi: 10.1016/j.tice.2016.08.002. PubMed PMID: 27561623

Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. 2011;6(3):e17899. doi: 10.1371/journal.pone.0017899. PubMed PMID: 21423756; PubMed Central PMCID: PMC3056777

Liu G, Cheng Y, Guo S, Feng Y, Li Q, Jia H, et al. Transplantation of adipose-derived stem cells for peripheral nerve repair. Int J Mol Med. 2011;28(4):565-72. doi: 10.3892/ijmm.2011.725. PubMed PMID: 21687931

Jia H, Wang Y, Tong XJ, Liu GB, Li Q, Zhang LX, et al. Sciatic nerve repair by acellular nerve xenografts implanted with BMSCs in rats xenograft combined with BMSCs. Synapse. 2012;66(3):256-69. doi: 10.1002/syn.21508. PubMed PMID: 22127791

Mohammadi R, Azizi S, Delirezh N, Hobbenaghi R, Amini K, Malekkhetabi P. The use of undifferentiated bone marrow stromal cells for sciatic nerve regeneration in rats. Int J Oral Maxillofac Surg. 2012;41(5): 650-6. doi: 10.1016/j.ijom.2011.10.028. PMID: 22154576

Nijhuis TH, Bodar CW, van Neck JW, Walbeehm ET, Siemionow M, Madajka M, et al. Natural conduits for bridging a 15-mm nerve defect: comparison of the vein supported by muscle and bone marrow stromal cells with a nerve autograft. J Plast Reconstr Aesthet Surg. 2013;66(2):251-9. doi: 10.1016/j.bjps.2012.09.011. PubMed PMID: 23063384

Nijhuis TH, Brzezicki G, Klimczak A, Siemionow M. Isogenic venous graft supported with bone marrow stromal cells as a natural conduit for bridging a 20 mm nerve gap. Microsurgery. 2010;30(8): 639-45.doi: 10.1002/micr.20818. PMID: 20842703

Salomone R, Bento RF, Costa HJ, Azzi-Nogueira D, Ovando PC, Da-Silva CF, et al. Bone marrow stem cells in facial nerve regeneration from isolated stumps. Muscle and Nerve. 2013;48(3):423-9. doi: 10.1002/mus.23768. PMID: 23824709

Kingham PJ, Kolar MK, Novikova LN, Novikov LN, Wiberg M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 2014;23(7):741-54. doi: 10.1089/scd.2013.0396. PMID: 24124760

Lin L, Du L. The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol. 2018;326: 24-32. doi: 10.1016/j.cellimm.2017.07.010. PMID: 28778535

Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci. 2017;18(9): pii: E1852. doi: 10.3390/ijms18091852. PMID: 28841158.; PMCID: PMC5618501

Petrova ES. [The use of stem cells to stimulate regeneration of damaged nerve]. Cytology. 2012; 54(7):525-540.

Kerman BE, Kim HJ, Padmanabhan K, Mei A, Georges S, Joens MS, et al. In vitro myelin formation using embryonic stem cells. Development. 2015;142(12):2213-25. doi: 10.1242/dev.116517. PMID: 26015546

Petrova ES, Isaeva EN, Korzhevskii DE. Differentiation of dissociated rat embryonic brain after allotransplantation into damaged nerve. Bull Exp Biol Med. 2013 Nov;156(1):136-8. PMID: 24319710. doi: 10.1007/s10517-013-2296-9

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-7. PMID: 9804556. doi: 10.1126/science.282.5391.1145

Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005;2(6):e161. DOI: 10.1371/journal.pmed.0020161. PMCID: PMC1160574; PMID: 15971941

Li Y, Wang R, Qiao N, Peng G, Zhang K, Tang K, et al. Transcriptome analysis reveals determinant stages controlling human embryonic stem cell commitment to neuronal cells. J Biol Chem. 2017;292(48):19590-19604. doi: 10.1074/jbc.M117.796383. PMID: 28972157.

Alić I, Kosi N, Kapuralin K, Gorup D, Gajović S, Pochet R, et al. Neural stem cells from mouse strain Thy1 YFP-16 are a valuable tool to monitor and evaluate neuronal differentiation and morphology. Neurosci Letter. 2016;634:32-41. doi: 10.1016/j.neulet.2016.10.001

Johnson TS, O'Neill AC, Motarjem PM, Nazzal J, Randolph M, Winograd JM. Tumor formation following murine neural precursor cell transplantation in a rat peripheral nerve injury model. J Reconstr Microsurg. 2008;24(8): 545-50. doi: 10.1055/s-0028-1088228. PMID: 18819061

Roche P, Alekseeva T, Widaa A, Ryan A, Matsiko A, Walsh M, et al. Olfactory Derived Stem Cells Delivered in a Biphasic Conduit Promote Peripheral Nerve Repair In Vivo. Stem Cells Transl Med. 2017;6(10): 1894-1904. doi: 10.1002/sctm.16-0420. PMID: 28960910

Batioglu-Karaaltin A, Karaaltin MV, Oztel ON, Ovali E, Sener BM, Adatepe T, et al. Human olfactory stem cells for injured facial nerve reconstruction in a rat model. Head Neck. 2016;38 (Suppl 1):E2011-20. doi: 10.1002/hed.24371. PubMed PMID: 26829770

Kabiri M, Oraee-Yazdani S, Shafiee A, Hanaee-Ahvaz H, Dodel M, Vaseei M, et al. Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats. J Biomed Sci. 2015;22:35. doi: 10.1186/s12929-015-0144-0. PMID: 25986461; PMCID: PMC4437686.

Guérout N, Duclos C, Drouot L, Abramovici O, Bon-Mardion N, Lacoume Y, et al. Transplantation of olfactory ensheathing cells promotes axonal regeneration and functional racovery of peripheral nerve lesion in rats. Muscle Nerve. 2011;43(4):543-51. doi: 10.1002/mus.21907. PMID: 21305567

Guo J, Guo S, Wang Y, Yu Y. Promoting potential of adipose derived stem cells on peripheral nerve regeneration. Mol Med Rep. 2017;16(5):7297-304. doi: 10.3892/mmr.2017.7570. PMID:28944869. PMCID:PMC5865858

Ullah I, Park JM, Kang YH, Byun JH, Kim DG, Kim JH, et al. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve. Stem Cells Dev. 2017;26(17):1247-57. doi: 10.1089/scd.2017.0068. PMID: 28657463.

Sanen K, Martens W, Georgiou M, Ameloot M, Lambrichts I, Phillips J, et al. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair? J Tissue Eng Regen Med. 2017;11(12):3362-3372. doi: 10.1002/term.2249. PMID: 28052540.

Hei WH, Almansoori AA, Sung MA, Ju KW, Seo N, Lee SH, et al. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration. Neurosci Letters. 2017;643:111-120. doi: 10.1016/j.neulet.2017.02.030. PMID:28215880.

Xiao B, Rao F, Guo ZY, Sun X, Wang YG, Liu SY, et al. Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration. Neural Regen Res. 2016;11(7):1172-9. doi: 10.4103/1673-5374.187061. PMCID: PMC4994464; PMID: 27630705.

Guo ZY, Sun X, Xu XL, Zhao Q, Peng J, Wang Y. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms. Neural Regen Res. 2015;10(4):651-8. doi: 10.4103/1673-5374.155442. PMID: 26170829; PMCID: PMC4424761

Cai S, Tsui YP, Tam KW, Shea GK, Chang RS, Ao Q, et al. Directed Differentiation of Human Bone Marrow Stromal Cells to Fate-Committed Schwann Cells. Stem Cell Reports. 2017;9(4):1097-1108. doi: 10.1016/j.stemcr.2017.08.004. PubMed PMID: 28890164; PubMed Central PMCID: PMC5639182.

Nijhuis TH, Brzezicki G, Klimczak A, Siemionow M. Isogenic venous graft supported with bone marrow stromal cells as a natural conduit for bridging a 20 mm nerve gap. Microsurgery. 2010;30(8):639-45. doi: 10.1002/micr.20818. PMID: 20842703

Wang Y, Jia H, Li WY, Tong XJ, Liu GB, Kang SW. Synergistic effects of bone mesenchymal stem cells and chondroitinase ABC on nerve regeneration after acellular nerve allograft in rats. Cell Mol Neurobiol. 2012;32(3):361-71. doi: 10.1007/s10571-011-9764-4. PMID: 22095068

Ladak A, Olson J, Tredget EE, Gordon T. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol. 2011;228(2):242-52. doi: 10.1016/j.expneurol.2011.01.013. PMID: 21281630

Zarbakhsh S, Bakhtiyari M, Faghihi A, Joghataei MT, Mehdizadeh M, Khoei S, et al. The effects of schwann and bone marrow stromal stem cells on sciatic nerve injury in rat: a comparison of functional recovery. Cell J. 2012;14(1):39-46. PubMed PMID:23626936; PubMed Central PMCID: PMC3635819

Yang Y, Yuan X, Ding F, Yao D, Gu Y, Liu J, et al. Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells. Tissue Eng Part A. 2011;17(17-18):2231-44. doi: 10.1089/ten.TEA.2010.0633. PMID: 21542668

Zheng L, Cui HF. Enhancement of nerve regeneration along a chitosan conduit combined with bone marrow mesenchymal stem cells. J Mater Sci Mater Med. 2012;23(9):2291-302. doi: 10.1007/s10856-012-4694-3. PMID: 22661248

de Luca AC, Fonta CM, Raffoul W, di Summa PG, Lacour SP. In vitro evaluation of gel-encapsulated adipose derived stem cells: Biochemical cues for in vivo peripheral nerve repair. J Tissue Eng Regen Med. 2018;12(3):676-686. doi: 10.1002/term.2486

Xie S, Lu F, Han J, Tao K, Wang H, Simental A, et al. Efficient generation of functional Schwann cells from adipose-derived stem cells in defined conditions. Cell Cycle. 2017;16(9):841-851. doi: 10.1080/15384101.2017.1304328. PubMed PMID: 28296571; PubMed Central PMCID: PMC5444349

Semenova VM, Lysyanyj NY, Stajno LP, Belskaya LN, Egorova DM. [Proliferative and differentiated potential of mesenchymal stem cells from adipose tissue under cultivation conditions]. Ukrainian neurosurgical journal. 2014;3:24-9.

Abbas OL, Borman H, Uysal ÇA, Gönen ZB, Aydin L, Helvacioğlu F, et al. Adipose-Derived Stem Cells Enhance Axonal Regeneration through Cross-Facial Nerve Grafting in a Rat Model of Facial Paralysis. Plast Reconstr Surg. 2016;138(2):387-96. doi: 10.1097/PRS.0000000000002351. PubMed PMID: 27465163

Klein SM, Vykoukal J, Li DP, Pan HL, Zeitler K, Alt E, et al. Peripheral Motor and Sensory Nerve Conduction following Transplantation of Undifferentiated Autologous Adipose Tissue-Derived Stem Cells in a Biodegradable U.S. Food and Drug Administration-Approved Nerve Conduit. Plast Reconstr Surg. 2016;138(1):132-9. doi: 10.1097/PRS.0000000000002291. PubMed PMID: 27348645

Sowa Y1, Imura T, Numajiri T, Nishino K, Fushiki S. Adipose-derived stem cells produce factors enhancing peripheral nerve regeneration: influence of age and anatomic site of origin. Stem Cells Dev. 2012;21(11):1852-62. doi: 10.1089/scd.2011.0403. PMID: 22150084

Tomita K, Madura T, Mantovani C, Terenghi G. Differentiated adipose-derived stem cells promote myelination and enhance functional recovery in a rat model of chronic denervation. J Neurosci Res. 2012;90(7): 1392-402. doi: 10.1002/jnr.23002. PMID: 22419645

Erba P, Mantovani C, Kalbermatten DF, Pierer G, Terenghi G, Kingham PJ. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg. 2010;63(12):e811-7. doi: 10.1016/j.bjps.2010.08.013. PubMed PMID: 20851070

Sun F, Zhou K, Mi WJ, Qiu JH. Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model. Neuroscie Lett. 2011;499(2): 104-8. doi: 10.1016/j.neulet.2011.05.043. PMID: 21651959

Kappos EA, Engels PE, Tremp M, Meyer zu Schwabedissen M, di Summa P, Fischmann A, et al. Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit. Stem Cells Dev. 2015;24(18):2127-41. doi: 10.1089/scd.2014.0424. PubMed PMID: 26134465

di Summa PG, Kingham PJ, Campisi CC, Raffoul W, Kalbermatten DF. Collagen (NeuraGen®) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci Lett. 2014;572:26-31. doi: 10.1016/j.neulet.2014.04.029. PMID: 24792394

di Summa PG, Kalbermatten DF, Raffoul W, Terenghi G, Kingham PJ. Extracellular matrix molecules enhance the neurotrophic effect of Schwann cell-like differentiated adipose-derived stem cells and increase cell survival under stress conditions. Tissue Eng Part A. 2013;19(3-4): 368-79. doi: 10.1089/ten.TEA.2012.0124. PMID: 22897220; PMCID: PMC3542878

Fairbairn NG, Randolph MA, Redmond RW. The clinical applications of human amnion in plastic surgery. J Plast Reconstr Aesthet Surg. 2014;67(5):662-75. doi: 10.1016/j.bjps.2014.01.031. PMID: 24560801

Gärtner A, Pereira T, Alves MG, Armada-da-Silva PA, Amorim I, Gomes R, et al. Use of poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton’s jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: in vitro and in vivo analysis. Differentiation. 2012;84(5):355-65. doi: 10.1016/j.diff.2012.10.001. PMID: 23142731

Matsuse D, Kitada M, Kohama M, Nishikawa K, Makinoshima H, Wakao S, et al. Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration. J Neuropathol Exp Neurol. 2010 Sep;69(9):973-85. doi: 10.1097/NEN.0b013e3181eff6dc. PubMed PMID: 20720501

Cottle BJ, Lewis FC, Shone V, Ellison-Hughes GM. Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell Res Ther. 2017;8(1): 158. doi: 10.1186/s13287-017-0612-4. PubMed PMID: 28676130; PubMed Central PMCID: PMC5496597

Tamaki T, Hirata M, Soeda S, Nakajima N, Saito K, Nakazato K, et al. Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells. PLoS One. 2014;9(3):e91257. doi: 10.1371/journal.pone.0091257. eCollection 2014. PubMed PMID: 24614849; PubMed Central PMCID: PMC3948784

Johnson TS, O'Neill AC, Motarjem PM, Amann C, Nguyen T, Randolph MA, et al. Photochemical tissue bonding: a promising technique for peripheral nerve repair. J Surg Res. 2007;143(2):224-9. PubMed PMID: 17543988. DOI: 10.1016/j.jss.2007.01.028

Yoshikawa M, Nakasa T, Ishikawa M, Adachi N, Ochi M. Evaluation of autologous skeletal muscle-derived factors for regenerative medicine applications. Bone Joint Res. 2017;6(5): 277-83. doi: 10.1302/2046-3758.65.BJR-2016-0187.R1. PMID: 28473335; PMCID:PMC5457645

Tamaki T, Hirata M, Nakajima N, Saito K, Hashimoto H, Soeda S, et al. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery. PLoS One. 2016;11(11):e0166639. PubMed PMID: 27846318; PubMed Central PMCID: PMC5112878. doi: 10.1371/journal.pone.0166639

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4): 663-76. PMID: 16904174. DOI: 10.1016/j.cell.2006.07.024

Kang S, Chen X, Gong S, Yu P, Yau S, Su Z, et al. Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern. Sci Rep. 2017;7(1):12233. doi: 10.1038/s41598-017-12452-x. PubMed PMID: 28947763; PubMed Central PMCID: PMC5612987

Ikeda M, Uemura T, Takamatsu K, Okada M, Kazuki K, Tabata Y, et al. Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res A. 2014;102(5):1370-8. doi: 10.1002/jbm.a.34816. PubMed PMID: 23733515

Satarian L, Javan M, Kiani S, Hajikaram M, Mirnajafi-Zadeh J, Baharvand H. Engrafted human induced pluripotent stem cell-derived anterior specified neural progenitors protect the rat crushed optic nerve. PLoS One. 2013;8(8):e71855.doi:10.1371/journal.pone.0071855. PubMed PMID: 23977164; PubMed Central PMCID: PMC3747054

Uemura T, Takamatsu K, Ikeda M, Okada M, Kazuki K, Ikada Y, et al. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochem Biophys Res Commun. 2012;419(1):130-5. doi: 10.1016/j.bbrc.2012.01.154. PMID: 22333572

Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4): 268-77. doi: 10.1038/nrc3034

Sieber-Blum M, Grim M, Hu Y, Szeder V. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn. 2004;231(2):258-69. doi: 10.1002/dvdy.20129. PMID: 15366003

Tsymbalyuk VI, Molotkovets VYu, Medvedyev VV, Luzan BM, Petriv TI. [Efficiency weld the damaged peripheral nerve rat according to estimates sciatic nerve functional index]. Ukrainian neurological journal. 2017;(2):63-68

Achilleos A, Trainor PA. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res. 2012;22(2):288-304. doi: 10.1038/cr.2012.11. PMID: 22231630; PMCID: PMC3271580

Mii S, Duong J, Tome Y, Uchugonova A, Liu F, Amoh Y, et al. Nestin-Expressing Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Promote Whisker Sensory-Nerve Growth in Long-Term 3D-Gelfoam® Histoculture. Methods Mol Biol. 2016;1453:39-47. doi: 10.1007/978-1-4939-3786-8_6. PubMed PMID: 27431245

Tsymbaliuk VY, Medvedev VV. [Neurogenic stem cells]. Kiev:Koval; 2005. P.596

Hoffman RM. Introduction to Hair-Follicle-Associated Pluripotent Stem Cells. Methods Mol Biol. 2016;1453:1-5. doi: 10.1007/978-1-4939-3786-8_1. PMID: 27431240

Hoffman RM. Nestin-expressing hair follicle-accessible pluripotent stem cells for nerve and spinal cord repair. Cells Tissues Organs. 2014 Jul; 200(1): 42-7. doi: 10.1159/000366098. PMID: 25766743

Vasyliev RG, Rodnichenko AE, Shamalo SN, Demidchouk AS, Labunets IF, Chaikovskii YuB, et al. Effects of Neural Crest-Derived Multipotent Stem Cells on Regeneration of an Injured Peripheral Nerve in Mice. Neurophysiology. 2015;47(1): 80-3. doi:10.1007/s11062-015-9501-6.

Vasyliev RG. [Multipotent Stem Cells of Bulbar Region of Hair Follicle with Properties of Neural Crest Derivatives]. Problems of cryobiology. 2012; 22 (2):165-68

Motohashi T, Yamanaka K, Chiba K, Aoki H, Kunisada T. Unexpected multipotency of melanoblasts isolated from murine skin. Stem Cells. 2009;27(4):888-97. doi: 10.1634/stemcells.2008-0678. PMID: 19350691

Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A. 2005;102(15):5530-4. PubMed PMID: 15802470; PubMed Central PMCID: PMC556262. DOI: 10.1073/pnas.0501263102

Najafzadeh N, Esmaeilzade B, Dastan Imcheh M. Hair follicle stem cells: In vitro and in vivo neural differentiation. World J Stem Cells. 2015;7(5):866-72. doi:10.4252/wjsc.v7.i5.866. PMID: 26131317; PMCID: PMC4478633

Amoh Y, Kanoh M, Niiyama S, Kawahara K, Sato Y, Katsuoka K, et al. Hoffman. Human and mouse hair follicles contain both multipotent and monopotent stem cells. Cell Cycle. 2009;8(1):176-7. doi: 10.4161/cc.8.1.7342. PMID: 19106614

Amoh Y, Hoffman RM. Hair follicle-associated-pluripotent (HAP) stem cells. Cell Cycle. 2017;16(22):2169-2175. PMID: 28749199. doi: 10.1080/15384101.2017.1356513

Amoh Y, Aki R, Hamada Y, Niiyama S, Eshima K, Kawahara K, et al. Nestin-positive hair follicle pluripotent stem cells can promote regeneration of impinged peripheral nerve injury. J Dermatol. 2012;39(1):33-8. doi: 10.1111/j.1346-8138.2011.01413.x. PMID: 22098554

Amoh Y, Kanoh M, Niiyama S, Hamada Y, Kawahara K, Sato Y, et al. Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells. J Cell Biochem. 2009;107(5): 1016-20. doi: 10.1002/jcb.22204. PMID: 19507228

Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, et al. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci USA. 2005;102(49):17734-8. doi: 10.1073/pnas.0508440102. PubMed PMID: 16314569; PubMed Central PMCID: PMC1308908

Lin H, Liu F, Zhang C, Zhang Z, Guo J, Ren C, et al. Pluripotent hair follicle neural crest stem-cell-derived neurons and schwann cells functionally repair sciatic nerves in rats. Mol Neurobiol. 2009;40(3):216-23. doi: 10.1007/s12035-009-8082-z. PMID: 19728182

Yamazaki A, Obara K, Tohgi N, Shirai K, Mii S, Hamada Y, et al. Implanted hair-follicle-associated pluripotent (HAP) stem cells encapsulated in polyvinylidene fluoride membrane cylinders promote effective recovery of peripheral nerve injury. Cell Cycle. 2017;16(20):1927-32. doi: 10.1080/15384101.2017.1363941. PMID: 28886268; PMCID: PMC5638363

Published
2020-06-29
How to Cite
1.
Petriv T. I., Tsymbalyuk Y. V., Potapov O. O., Kvasnitsʹkyy M. V., Honcharuk O. O., Tatarchuk M. M. STEM CELL TECHNOLOGY IN PERIPHERAL NERVE RESTORATION. East Ukr Med J [Internet]. 2020Jun.29 [cited 2024Mar.29];8(2):210-29. Available from: https://eumj.med.sumdu.edu.ua/index.php/journal/article/view/97