THE STUDY OF THE ACTIVATION OF MTORC1 AND ITS SUBSTRATE P70S6K INVOLVED IN TYPE 2 DIABETES MELLITUS AND ONCOGENETIC PROCESSES
Article PDF

Keywords

type 2 diabetes, signaling pathway, PRAS40, mTOR, p70S6K, cancer

How to Cite

Vatseba T. S., Sokolova L. K., Pushkarev V. V., Kovzun O. I., Pushkarev V. M., & Tronko M. D. (2020). THE STUDY OF THE ACTIVATION OF MTORC1 AND ITS SUBSTRATE P70S6K INVOLVED IN TYPE 2 DIABETES MELLITUS AND ONCOGENETIC PROCESSES. Eastern Ukrainian Medical Journal, 8(2), 182-190. https://doi.org/10.21272/eumj.2020;8(2):182-190

Abstract

Introduction. Pathogenetic factors of diabetes may affect the activity of intracellular systems of oncogenesis and metabolism regulation, one of which is PI3K/Akt/mTORC1. Macrophages and lymphocytes are involved in the pathogenesis of diabetes and cancer. Detection of excessive activation of PI3K/Akt/mTORC1 components and substrates in these cells may indicate the need for additional correction of metabolic processes in patients with type 2 diabetes from the point of prevention of cancer. The aim: to study the activation of mTORC1 by determining the phosphorylation of PRAS40 and p70S6K1 in the leukocytes of patients with type 2 diabetes and cancer.

Materials and methods. The study included women from the following groups: control group, patients with type 2 diabetes, cancer patients, patients with both diseases. The content of phosphorylated PRAS40 (phospho-T246) and p70S6K1 (phospho-T389) was determined using laboratory kits ELISA KNO0421 and ELISA 85-86053 of Invitrogen (USA). The protein concentration in the lysate was determined using a BCA Novagen protein assay kit (USA). Measurements were performed on a microplate reader (Bio-tek Instruments, USA) at a wavelength of 450 nm.

Results. Significantly increased content of phosphorylated PRAS40 and p70S6K1 in leukocytes of patients with type 2 diabetes mellitus and cancer was detected. The number of positive phospho-PRAS40 tests in patients with diabetes was 83.3%, and in cancer patients - 66.7%. Was revealed the reduced content of phospho-PRAS40 in leukocytes of patients with a combination of diabetes and cancer.

Conclusions. The increased amount of phosphorylated PRAS40 and p70S6K1 proves the activation of the studied signaling pathway by diabetes mellitus type 2. Its decrease by cancer and diabetes can be explained by the possible competing effects of the proteins that affect upstream regulators of these kinases or them directly.

https://doi.org/10.21272/eumj.2020;8(2):182-190
Article PDF

References

1. Andersen JN, Sathyanarayanan S, Di Bacco A, Chi A, Zhang T, Chen AH et al. [Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors] Sci Transl Med. 2010; 4(2:) 43-55. doi: 10.1126/scitranslmed.3001065.
2. Gallagher EJ, LeRoith D. [Diabetes, cancer, and metformin: connections of metabolism and cell proliferation]. Acad Sci. 2011;1243:54­68. doi: 10.1111/j.1749-6632.2011.06285.x.
3. Yang J, Nishihara R, Zhang X, Ogino S, Qian ZR. [Energy sensing pathways: Bridging type 2 diabetes and colorectal cancer?]. J Diabetes Complications. 2017;31(7):1228‐1236. doi:10.1016/j.jdiacomp.2017.04.012.
4. Huang K, Fingar DC. [Growing knowledge of the mTOR signaling network]. Semin Cell Dev Biol. 2014; 36: 79-90. doi: 10.1016/j.semcdb.2014.09.011.
5. Wang H, Zhang Q, Wen Q, Zheng Y, Lazarovici P, Jiang H et al. [Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway]. Сell Signal. 2012; 24(1): 17-24. doi: 10.1016/j.cellsig.2011.08.010.
6. Kim LC, Cook RS, Chen J. [mTORC1 and mTORC2 in cancer and the tumor microenvironment]. Oncogene. 2017; 36(16): 2191-201. doi:10.1038/onc.2016.363.
7. Yeung SC. [PIM1 (pim-1 oncogene)]. Atlas Genet Cytogenet Oncol Haematol 2013; 17(10): 704-8.
8. Holz MK. [The role of S6K1 in ER-positive breast cancer]. Cell Cycle. 2012;11(17):3159‐3165. doi:10.4161/cc.21194.
9. De Oliveira CE, Oda JM, Losi Guembarovski R, de Oliveira KB, Ariza CB, Neto JS, et al. [CC chemokine receptor 5: the interface of host immunity and cancer]. Dis Markers. 2014; 2014: 126954. doi: 10.1155/2014/126954.
10. Sokolova LK, Pushkarev VM, Pushkarev VV, N.D. Tronko. [Diabetes and atherosclerosis. Cellular mechanisms of pathogenesis]. Endokrynologia. 2017; 22(2): 127-38.
11. Tronko ND, Pushkarev VM, Sokolova LK, Pushkarev VV. [Nuclear factor NF-κB involvement in transformation of chronic inflammation into type 2 diabetes]. J Natl Acad Med Sci Ukraine. 2017; 23(1-2): 23-39.
12. Ali M, Bukhari SA, Ali M, Lee HW. [Upstream signalling of mTORC1 and its hyperactivation in type 2 diabetes] BMB Rep. 2017;50(12):601‐609. doi:10.5483/bmbrep.2017.50.12.206.
13. Wiza C, Herzfeld de Wiza D, Nascimento EB, Lehr S, Al-Hasani H, Ouwens DM. [Knockdown of PRAS40 inhibits insulin action via proteasome-mediated degradation of IRS1 in primary human skeletal muscle cells]. Diabetologia. 2013;56(5):1118‐1128. doi:10.1007/s00125-013-2861-9.
14. Yoon MS. [The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling]. Nutrients. 2017;9(11):1176. doi:10.3390/nu9111176.
15. Sokolova LK, Pushkarev VM, Belchina YB, Pushkarev VV, Tronko ND. [Effect of combined treatment with insulin and metformin on 5′AMP-activated protein kinase activity in lymphocytes of diabetic patients]. Dopov. Nac. akad. nauk Ukr. 2018, 5:100-104. doi: 10.15407/dopovidi2018.05.100.
16. Wiza C, Chadt A, Blumensatt M, Kanzleiter T, Herzfeld De Wiza D, Horrighs A, et al. [Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle]. Arch Physiol Biochem. 2014;120(2):64-72. doi: 10.3109/13813455.2014.894076.
17. Völkers M, Toko H, Doroudgar S, Din S, Quijada P, Joyo AY, et al. [Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1]. Proc Natl Acad Sci USA. 2013;110(31):12661-6. doi: 10.1073/pnas.1301455110.
18. Havel JJ, Li Z, Cheng D, Peng J, Fu H. [Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway]. Oncogene. 2015;34(12):1487-98. doi: 10.1038/onc.2014.91.
19. Hong-Brown LQ, Brown CR, Kazi AA, Huber DS, Pruznak AM, Lang CH. [Alcohol and PRAS40 knockdown decrease mTOR activity and protein synthesis via AMPK signaling and changes in mTORC1 interaction]. J Cell Biochem. 2010;109(6):1172-84. doi: 10.1002/jcb.22496.
20. Pushkarev VM, Sokolova LK, Pushkarev VV, Tronko ND. [The role of AMPK and mTOR in the development of insulin resistance and type 2 diabetes. The mechanism of metformin action (review)]. Probl Endocrin Pathol. 2016; 3: 77-90.
21. Jiang N, Hjorth-Jensen K, Hekmat O, Iglesias-Gato D, Kruse T, Wang C, et al. [In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth]. Oncogene. 2015;34(21):2764-76. doi: 10.1038/onc.2014.206.
22. Faes S, Demartines N, Dormond O. [Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity]. Oxid Med Cell Longev. 2017;2017:1726078. doi:10.1155/2017/1726078.
23. Madhunapantula SV, Mosca PJ, Robertson GP. [The Akt signaling pathway: an emerging therapeutic target in malignant melanoma]. Cancer Biol Ther. 2011;12(12):1032‐1049. doi:10.4161/cbt.12.12.18442.
24. Malla R, Ashby CR Jr, Narayanan NK, Narayanan B, Faridi JS, Tiwari AK. [Proline-rich AKT substrate of 40-kDa (PRAS40) in the pathophysiology of cancer]. Biochem Biophys Res Commun. 2015;463(3):161‐166. doi:10.1016/j.bbrc.2015.05.041.
25. Pushkarev VM, Sokolova LK, Pushkarev VV, Tronko ND. [Biochemical mechanisms connecting diabetes and cancer. Effects of methormine]. Endokrynologia 2018; 23(2): 167-79.
26. Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, et al. [Trial watch: Prognostic and predictive value of the immune infiltrate in cancer]. Oncoimmunology. 2012;1(8):1323-1343. doi: 10.4161/onci.22009.
27. Dituri F, Mazzocca A, Giannelli G, Antonaci S. [PI3K functions in cancer progression, anticancer immunity and immune evasion by tumors]. Clin Dev Immunol. 2011;2011:947858. doi:10.1155/2011/947858.
28. Benitez AC, Dai Z, Mann HH, Reeves RS, Margineantu DH, Gooley TA, et al. Expression, signaling proficiency, and stimulatory function of the NKG2D lymphocyte receptor in human cancer cells. Proc Natl Acad Sci USA. 2011;108(10):4081-6. doi: 10.1073/pnas.1018603108.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.