METHODS AND CAPABILITIES OF DETERMINATION OF ROTATIONAL-TORSIONAL CHANGES IN THE SPINE IN PATIENTS WITH SCOLIOTIC DISEASE

  • Yuriy V. Shkatula Department of Emergency Care and Disaster Medicine, Sumy State University, Sumy, Ukraine https://orcid.org/0000-0001-5689-6318
  • Yuriy О. Badion Department of Emergency Care and Disaster Medicine, Sumy State University, Sumy, Ukraine https://orcid.org/0000-0002-1646-282X
  • Pavlo V. Rudenko Department of Applied Materials Science and Technology of Structural Materials, Sumy State University, Sumy, Ukraine
Keywords: spine, scoliotic disease, rotation, torsion, diagnostics

Abstract

The article presents an unstructured review of publications that describe methods and technologies for determining the parameters of spinal deformity in the horizontal plane in patients with the scoliotic disease. Descriptiveness and clinical suitability of the most well-known and practically significant methods are investigated.

At X-ray investigation, the character and parameters of curvature are studied in three planes. In the frontal plane, the magnitude of the lateral arcs of deformation is determined; in the sagittal plane, the state of the spine profile is assessed. When studying the parameters of spinal deformation in the horizontal plane, there are rotational displacement and torsional deformation. The authors noted that medical scientists often equal and confuse the two concepts.

Determining the characteristics of spinal deformity in the horizontal plane is an important tool for preoperative planning, while in conservative treatment and dynamic monitoring, the main attention is paid to the parameters of lateral curvature in the frontal plane.

The current trend of a comprehensive examination of patients with the scoliotic disease is the emergence of new, more informative methods for quantitative evaluation of the parameters of spinal deformity in the horizontal plane, which is primarily due to the development and improvement of technology. It should be noted that the study of the features of anatomical-structural, torsional changes is given insufficient attention. Further study of torsional changes of the vertebrae should lead to a better understanding of the mechanisms that cause scoliotic deformity, which will lead to the development of pathogenetic methods of treatment.

Dynamic assessment of rotational-torsional changes of the spine can be used as a predictor of progression in various types of scoliotic deformities, an indicator of the outcome of conservative and surgical treatment.

Author Biographies

Yuriy V. Shkatula, Department of Emergency Care and Disaster Medicine, Sumy State University, Sumy, Ukraine

д-р мед. наук, професор, завідувач кафедри екстреної медичної допомоги та медицини катастроф, СумДУ, вул. Троїцька, 39, м. Суми, 40000 (тел. +38099546171; е-mail: y.shkatula@med.sumdu.edu.ua; https://orcid.org/0000-0001-5689-6318).

Yuriy О. Badion, Department of Emergency Care and Disaster Medicine, Sumy State University, Sumy, Ukraine

канд. мед. наук, асистент кафедри екстреної медичної допомоги та медицини катастроф, СумДУ, вул. Троїцька, 39, м. Суми, 40000 (тел. +380994581857; е-mail: y.badion@med.sumdu.edu.ua; https://orcid.org/0000-0002-1646-282X)

Pavlo V. Rudenko, Department of Applied Materials Science and Technology of Structural Materials, Sumy State University, Sumy, Ukraine

асистент кафедри прикладного матеріалознавства і технології конструкційних матеріалів, СумДУ, вул. Римського-Корсакова, 2, м. Суми, 40000 (тел. +380661020548; е-mail: P.rudenko@pmtkm.sumdu.edu.ua)

References

1. Anderson SM. Spinal curves and scoliosis. Radiol Technol. 2007;79(1):44–68.
2. Korzh NA, Mezencev AA. [Scoliotic disease]. Treatment and diagnosis. 2004;4:9–16. (In Russian).
3. Cheng JC, Castelein RM, Chu WC et al. Adolescent idiopathic scoliosis. Nature reviews. Disease primers. 2017;1:15–30. doi: 10.1038/nrdp.2015.30
4. Dickson RA. Spinal deformity – adolescent idiopathic scoliosis. Spine. 1999;24(24):2601.
5. Negrini S, Donzelli S, Aulisa AG et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018;13:3. doi: 10.1186/s13013-017-0145-8
6. Vergari C, Karam M, Pietton R et al. Spine slenderness and wedging in adolescent idiopathic scoliosis and in asymptomatic population: an observational retrospective study. Eur. Spine J. 2020;29(4):726–736. doi: 10.1007/s00586-020-06340-8
7. Drobyshevskiy V. Aetiology of idiopathic scoliosis: the “scotch type“ effect or the abnormal initial local anterior-lateral conjunction between the dura mater spinalis and the periosteum of spinal canal of concave side. New evidence. Scoliosis. 2014;9(Suppl. 1):O19. doi: 10.1186/1748-7161-9-S1-O19
8. Labrom FR, Izatt MT, Claus AP, Little JP. Adolescent idiopathic scoliosis 3D vertebral morphology, progression and nomenclature: a current concepts review. Eur. Spine J. 2021;10.1007:s00586-021-06842-z. doi: 10.1007/s00586-021-06842-z
9. Liljenqvist UR, Allkemper T, Hackenberg L et al. Analysis of vertebral morphology in idiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. J. Bone Joint Surg. 2002;84A:359–368.
10. Millner PA, Dickson RA. Idiopathic scoliosis: biomechanics and biology. Eur Spine. 1996;5:362–373. doi: 10.1007/BF00301963
11. Serdjuk VV. [Idiopathic scoliosis: mechanisms of its development]. Bulletin of orthopedics, traumatology and prosthetics. 2010;3:19–26. (In Russian).
12. Pasha S, Schlösser T, Zhu X et al. Application of low-dose stereoradiography in in vivo vertebral morphologic measurements: comparison with computed tomography. J. Pediatr. Orthop. 2019;39(9):487–494. doi: 10.1097/BPO.0000000000001043
13. Skalli W, Vergari C, Ebermeyer E et al. Early detection of progressive adolescent idiopathic scoliosis: a severity index. Spine. 2017;42(11):823–830. doi: 10.1097/BRS.0000000000001961
14. Noshchenko A, Hoffecker L, Lindley EM et al. Predictors of spine deformity progression in adolescent idiopathic scoliosis: A systematic review with meta-analysis. World J. Orthop. 2015;6(7):537–558. doi: 10.5312/wjo.v6.i7.537
15. Nouri F, Ghasemi SH, Lee JY. System reliability analysis of the scoliosis disorder. BMC Musculoskelet Disord. 2020;21(1):199. doi: 10.1186/s12891-020-03230-4
16. Abelin-Genevois K, Sassi D, Verdun S, Roussouly P. Sagittal classification in adolescent idiopathic scoliosis: original description and therapeutic implications. Eur. Spine J. 2018;27(9):2192–2202. doi: 10.1007/s00586-018-5613-1
17. Ferguson AB. The study and treatment of scoliosis. South Med. J. 1930;23(2):116–120.
18. Poncet P, Jaremko JL, Ronsky J et al. Prediction of spinal deformity in scoliosis from geometric torsion. Stud. Health. Technol. Inform. 2002;91:64–67.
19. Pasha S, Hassanzadeh P, Ecker M, Ho V. A hierarchical classification of adolescent idiopathic scoliosis: Identifying the distinguishing features in 3D spinal deformities. PLoS One. 2019;14(3):e0213406. doi: 10.1371/journal.pone.0213406
20. Chaklin VD, Abalmasova EA. [Scoliosis and kyphosis]. Moskva, 1973, pp. 122–123. (In Russian).
21. Lim HH, Ong CH. Dynamic measurement of axial vertebral rotation and rotational flexibility in scoliosis by flouroscopic method. The Medical Journal of Malaysia. 2001;56:41–45.
22. Pasha S, Capraro A, Cahill PJ et al. Bi-planar spinal stereoradiography of adolescent idiopathic scoliosis: considerations in 3D alignment and functional balance. Eur. Spine J. 2016;25(10):3234–3241. doi: 10.1007/s00586-016-4661-7
23. Ebrahimi S, Gajny L, Vergari C et al. Vertebral rotation estimation from frontal X-rays using a quasi-automated pedicle detection method. Eur. Spine J. 2019;28(12):3026–3034. doi: 10.1007/s00586-019-06158-z
24. Chen K, Zhai X, Sun K et al. A narrative review of machine learning as promising revolution in clinical practice of scoliosis. Ann Transl Med. 2021;9(1):67. doi: 10.21037/atm-20-5495
25. Knott P, Lonner B, Smith M et al. Measuring anterior trunk deformity in scoliosis: development of asymmetry parameters using surface topography (a pilot study). Scoliosis Spinal Disord. 2016;11(Suppl. 2):32. doi: 10.1186/s13013-016-0096-5
26. Birchall D, Hughes D, Gregson B, Williamson B. Demonstration of vertebral and disc mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging. Eur. Spine J. 2005;14(2):123–129. doi: 10.1007/s00586-004-0705-5
27. Birchall D, Hughes DG, Hindle J, Robinson L, Williamson JB. Measurement of vertebral rotation in adolescent idiopathic scoliosis using three-dimensional magnetic resonance imaging. Spine. 1997;22(20):2403–2407. doi: 10.1097/00007632-199710150-00016
28. Brink RC, Homans JF, Schlösser TPC et al. CT-based study of vertebral and intravertebral rotation in right thoracic adolescent idiopathic scoliosis. Eur Spine J. 2019;28:3044–3052. doi: 10.1007/s00586-019-06138-3
29. Adam C, Askin G. Automatic measurement of vertebral rotation in idiopathic scoliosis. Spine. 2006;31(3):80–83.
30. Castelein RM, Pasha S, Cheng JC, Dubousset J. Idiopathic scoliosis as a rotatory decompensation of the spine. J. Bone Miner Res. 2020;35(10):1850–1857. doi: 10.1002/jbmr.4137
31. Seroussi R, Krag MH, Muller DL, Pope MH. Internal deformations of intact and denucleated human lumbar discs subjected to compression, flexion, and extension loads. J. Orthop. Res. 1989;7:122–131. doi: 10.1002/jor.1100070117
32. Guan T, Zhang Y, Anwar A et al. Determination of three-dimensional corrective force in adolescent idiopathic scoliosis and biomechanical finite element analysis. Front Bioeng Biotechnol. 2020;8:963. doi: 10.3389/fbioe.2020.00963
33. Kadoury S, Shen J, Parent S. Global geometric torsion estimation in adolescent idiopathic scoliosis. Med. Biol. Eng. Comput. 2014;52:309–319. doi: 10.1007/s11517-013-1132-8
34. Kojima T, Kurokawa T. Rotation vector, a new method for representation of three-dimensional deformity in scoliosis. Spine. 1992;17(11):1296–1303. doi: 10.1097/00007632-199211000-00007
35. Kuklo T, Potter BK, Lawrence L. Vertebral rotation and thoracic torsion in adolescent idiopathic scoliosis: what is the best radiographic correlate? Journal of Spinal Disorders and Techniques. 2005;18(2):139–147.
36. Lee CS, Hwang CJ, Jung HS et al. Association between vertebral rotation pattern and curve morphology in adolescent idiopathic scoliosis. World Neurosurg. 2020;143:e243–e252. doi: 10.1016/j.wneu.2020.07.111
37. Lin H. The correlation comparison of vertebral axial rotation relative to curvature and torsion in scoliosis by simplified 3D spine model. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006;1517–1520. doi: 10.1109/IEMBS.2006.259988
38. Pizones J, Zúñiga L, Sánchez-Mariscal F et al. Relationship between the different torsion-related thoracic deformity parameters of adolescent idiopathic scoliosis. Eur. J. Orthop. Surg. Traumatol. 2016;26:763–769. doi: 10.1007/s00590-016-1762-2
39. Tesakov DK, Tesakova DD. [X-ray assessment of spinal rotation in case of its scoliotic deformity]. Military medicine. 2007;4:50–53. (In Russian).
40. Golovaha ML, Tjazhelov AA, Letuchaja NP et al. [Biomechanical aspects of an experimental study of the functional treatment of C-shaped scoliotic deformity of the spine]. Trauma. 2019;20(3):32–41. (In Russian).
41. Poncet P, Dansereau J, Labelle H. Geometric torsion in idiopathic scoliosis. Spine. 2001;26(20):2235–2243.
42. Romano M, Mastrantonio M. Torsion bottle, a very simple, reliable, and cheap tool for a basic scoliosis screening. Scoliosis. 2018;13:4. doi: 10.1186/s13013-018-0150-6
43. Schlösser TP, van Stralen M, Brink RC et al. Three-dimensional characterization of torsion and asymmetry of the intervertebral discs versus vertebral bodies in adolescent idiopathic scoliosis. Spine. 2014;39(19):E1159–E1166. doi: 10.1097/BRS.0000000000000467
44. Rizkallah M, Sebaaly A, Kharrat K, Kreichati G. Selecting the lowest instrumented vertebra in adolescent idiopathic scoliosis: Comparison of the Lenke, Suk, and Dubousset criteria. Orthop. Traumatol. Surg. Res. 2018;104(5):631–635. doi: 10.1016/j.otsr.2017.12.007
45. Cobb JR. Outline for the study of scoliosis. American Academy of Orthopedic Surgeons, Instructional Course Lectures. 1948;5:261–275.
46. Takács M, Orlovits Z, Jáger B, Kiss RM. Comparison of spinal curvature parameters as determined by the ZEBRIS spine examination method and the Cobb method in children with scoliosis. PLoS One. 2018;13(7):e0200245. doi: 10.1371/journal.pone.0200245
47. Nash CL, Moe JH. A study of vertebral rotation. J. Bone Joint Surg. Am. 1969;51(2):223–229. doi: 10.2106/00004623-196951020-00002
48. Perdriolle R, Vidal J. Thoracic idiopathic scoliosis curve evolution and prognosis. Spine. 1985;10(9):785–791. doi: 10.1097/00007632-198511000-00001
49. Perdriolle R, Vidal J. Etude de la courbure scoliotique. Importancede I’examin etde la rotation vertebrale. Rev. Chir. Orthop. 1981;67:25–34.
50. Raimondi P. La rotazione vertebrale. Proposta di nuovo metododi vilutazione. Annali ISEFI Aquila. 1984:81–84.
51. Weiss HR. Measurement of vertebral rotation: Perdriolle versus Raimondi. Eur. Spine J. 1995;4:34–38. doi: 10.1007/BF00298416
52. Lam GC, Hill DL et al. Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods. Scoliosis. 2008;3:16. doi: 10.1186/1748-7161-3-16
53. Vrtovec T, Pernuš F, Likar B. A review of methods for quantitative evaluation of axial vertebral rotation. Eur. Spine J. 2009;18:1079–1090. doi: 10.1007/s00586-009-0914-z
54. Ho E, Upadhyay SS, Chan FL et al. New methods of measuring vertebral rotation from computed tomographic scans: an intraobserver and interobserver study on girls with scoliosis. Spine. 1993;18(9):1173–1177.
Published
2021-09-29
How to Cite
Yuriy V. Shkatula, Yuriy О. Badion, & Pavlo V. Rudenko. (2021). METHODS AND CAPABILITIES OF DETERMINATION OF ROTATIONAL-TORSIONAL CHANGES IN THE SPINE IN PATIENTS WITH SCOLIOTIC DISEASE. Eastern Ukrainian Medical Journal, 9(3), 209-218. https://doi.org/10.21272/eumj.2021;9(3):209-218