Article PDF


diabetes mellitus, antidiabetic plants, medicinal plants, hyperglycemia, hypoglycemia, insulin, antioxidants

How to Cite

A. O. Ojetunde. (2021). ANTIDIABETIC EFFECTS OF MEDICINAL PLANTS. Eastern Ukrainian Medical Journal, 9(1), 1-17.;9(1):1-17


Diabetes is a chronic disorder that is characterized by an increase in blood glucose (hyperglycemia) with alteration of protein, carbohydrates, and fat metabolism. Consequently, it can lead to renal failure, atherosclerosis, nerve damage, blindness, and coronary heart disease. It is also known as the 5th leading cause of death. Although, there are numerous types of glucose-lowering drugs that exhibit anti-diabetic effects but results of treatment in patients are still not so perfect. Therefore, many treatments that include the use of medicinal plants are suggested and encouraged. Medical plants are believed to contain chemical substances with potential curative effects and can often have anti-diabetic effects. This study introduced about 23 effective medicinal plants reported by various experimental researchers with the curative potential to treat diabetes. Although, most of the research used animal models, there is a clear indication that medicinal plants with anti-diabetic potentials are being investigated by several researchers. However, there is a need for further research to be conducted with isolated bioactive ingredients present in these plants in order to have potential ingredients that could be used as a pharmacological agent in the treatment of diabetes mellitus with fewer adverse effects. Again, the mechanisms of action of these medicinal plants in ameliorating diabetes need to be investigated.;9(1):1-17
Article PDF


1. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TP. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. 2007;40(3):163-173. doi:10.3164/jcbn.40.163.
2. Osadebe PO, Odoh EU, Uzor PF. The search for new hypoglycemic agents from plant. Afr J Pharm Pharmacol. 2014;8(11):292-303. doi: 10.5897/AJPP2014.3933.
3. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(1):13-28. doi:10.2337/dc19-S002.
4. Velho G, Froguel P. Maturity-onset diabetes of the young (MODY), MODY genes and non-insulin-dependent diabetes mellitus. Diabetes Metab. 1997;23 Suppl 2:34-37.
5. Wais M, Nazish I, Samad A, Beg S, Abusufyan S, Ajaj SA, et al. Herbal drugs for diabetic treatment: an updated review of patents. Recent Pat Antiinfect Drug Discov. 2012;7(1):53-59. doi:10.2174/157489112799829701.
6. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-1053. doi:10.2337/diacare.27.5.1047.
7. Kazi S. Use of traditional plants in diabetes mellitus. Int J Pharm. 2014;4(4):283-289.
8. Asad M, Munir TA, Farid S, Aslam M, Shah SS. Duration effect of Acacia nilotica leaves extract and glibenclamide as hypolipidaemic and hypoglycaemic activity in alloxan induced diabetic rats. J Pak Med Assoc. 2015;65(12):1266-1270.
9. Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician. 2016;8(1):1832-1842. doi:10.19082/1832.
10. Dey L, Attele AS, Yuan CS. Alternative therapies for type 2 diabetes. Altern Med Rev. 2002;7(1):45-58. PMID: 11896745.
11. Kooti W, Moradi M, Akbari SA, Sharafi-Ahvazi N, AsadiSamani M, Ashtary-Larky D. Therapeutic and pharmacological potential of Foeniculum vulgare Mill: A review. J Herb Med Pharmacol. 2015;4:1-9.
12. Okwu DE. Evaluation of the chemical composition of indigenous spices and flavouring agents. Global J Pure Appl Sci. 2001;7(3):455-459. doi:10.4314/gjpas.v7i3.16293.
13. Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem. 2008;51(9):2589-2599. doi:10.1021/jm0704090.
14. Afrisham R, Aberomand M, Ghaffari MA, Siahpoosh A, Jamalan M. Inhibitory effect of Heracleum persicum and Ziziphus jujuba on activity of Alpha-Amylase. Journal of Botany. 2015;2015:1-8. doi:10.1155/2015/824683.
15. Kuhn M, Winston D. Herbal therapy and supplements: a scientific and traditional approach. New York: Lippincott and Wilkins, 2000;347-350.
16. Saha MR, Dey P, Sarkar I, Sarker DD, Haldar B, Chaudhuri TK, et al. Acacia nilotica leaf improves insulin resistance and hyperglycemia associated acute hepatic injury and nephrotoxicity by improving systemic antioxidant status in diabetic mice. J Ethnopharmacol. 2018;210:275-286. doi:10.1016/j.jep.2017.08.036.
17. Abuelgassim AO. Effect of Acacia nilotica fruit extract on serum glucose and lipid concentrations in alloxan-induced diabetic rats. Pak J Biol Sci. 2013;16(21):1398-1402. doi:10.3923/pjbs.2013.1398.1402.
18. Omara EA, Nada SA, Farrag AR, Sharaf WM, El-Toumy SA. Therapeutic effect of Acacia nilotica pods extract on streptozotocin induced diabetic nephropathy in rat. Phytomedicine. 2012;19(12):1059-1067. doi:10.1016/j.phymed.2012.07.006.
19. Asad M, Munir TA, Afzal N. Acacia nilotica leave extract and glyburide: comparison of fasting blood glucose, serum insulin, beta-thromboglubulin levels and platelet aggregation in streptozotocin induced diabetic rats. J Pak Med Assoc. 2011;61(3):247-251.
20. Asad M, Munir TA, Afzal N. Acacia nilotica leave extract and glyburide: comparison of fasting blood glucose, serum insulin, beta-thromboglubulin levels and platelet aggregation in streptozotocin induced diabetic rats. J Pak Med Assoc. 2011;61(3):247-251.
21. Abubakar US, Abdullahi S, Ayuba V, Kaigama S, Halidu US, Ayuba MK. Medicinal plants used for the management of diabetes mellitus in Zaria, Kaduna state, Nigeria. Journal of Pharmacy & Pharmacognosy Research. 2017;5(3):156-164.
22. Ebaid H, Bashandy SAE, Alhazza IM, Hassan I, Al-Tamimi J. Efficacy of a methanolic extract of Adansonia digitata leaf in alleviating hyperglycemia, hyperlipidemia, and oxidative stress of diabetic rats. Biomed Res Int. 2019;2019:2835152. doi:10.1155/2019/2835152.
23. Ülger TG, Çakiroglu FP. The effects of onion (Allium cepa L.) dried by different heat treatments on plasma lipid profile and fasting blood glucose level in diabetic rats. Avicenna J Phytomed. 2020;10(4):325-333.
24. Campos KE, Diniz YS, Cataneo AC, Faine LA, Alves MJ, Novelli EL. Hypoglycaemic and antioxidant effects of onion, Allium cepa: dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. Int J Food Sci Nutr. 2003;54(3):241-246. doi:10.1080/09637480120092062.
25. Taj Eldin IM, Ahmed EM, Elwahab H M A. Preliminary Study of the clinical hypoglycemic effects of Allium cepa (Red Onion) in Type 1 and Type 2 diabetic patients. Environ Health Insights. 2010;4:71-77. doi:10.4137/EHI.S5540.
26. Dorant E, van den Brandt PA, Goldbohm RA. Allium vegetable consumption, garlic supplement intake, and female breast carcinoma incidence. Breast Cancer Res Treat. 1995;33(2):163-170. doi: 10.1007/BF00682723.
27. Banerjee SK, Maulik SK. Effects of garlic on cardiovascular disorders: a review. Nutritional Journal. 2002;1(4):1–14.
28. Carson JF. Chemistry and biological properties of onion and garlic. Food Reviews Internationl. 1987;3:71-103.
29. Reddy BS, Rao CV, Rivenson A, Kelloff G. Chemoprevention of colon carcinogenesis by organosulfur compounds. Cancer Res. 1993;53(15):3493-3498.
30. Ikechukwu OJ, Ifeanyi OS. The antidiabetic effects of the bioactive flavonoid (Kaempferol-3-O-β-D-6{P- Coumaroyl} Glucopyranoside) isolated from Allium cepa. Recent Pat Antiinfect Drug Discov. 2016;11(1):44-52. doi:10.2174/1574891x11666151105130233.
31. Bang MA, Kim HA, Cho YJ. Alterations in the blood glucose, serum lipids and renal oxidative stress in diabetic rats by supplementation of onion (Allium cepa. Linn). Nutr Res Pract. 2009;3(3):242-246. doi:10.4162/nrp.2009.3.3.242.
32. Jung YS, Kim MH, Lee SH, Baik EJ, Park SW, Moon CH. Antithrombotic effect of onion in streptozotocin-induced diabetic rat. Prostaglandins Leukot Essent Fatty Acids. 2002;66(4):453-458. doi:10.1054/plef.2002.0373.
33. Sundaram R, Mitra SK. Antioxidant activity of ethyle acetate soluble fraction of Acacia Arabica barks in rats. Indian J Pharmacol. 2007;39:33-38.
34. Torres-Urrutia C, Guzmán L, Schmeda-Hirschmann G, et al. Antiplatelet, anticoagulant, and fibrinolytic activity in vitro of extracts from selected fruits and vegetables. Blood Coagul Fibrinolysis. 2011;22(3):197-205. doi:10.1097/MBC.0b013e328343f7da.
35. Yamada K, Naemura A, Sawashita N, Noguchi Y, Yamamoto J. An onion variety has natural antithrombotic effect as assessed by thrombosis/thrombolysis models in rodents. Thromb Res. 2004;114(3):213-220. doi:10.1016/j.thromres.2004.06.007.
36. Yamamoto Y, Aoyama S, Hamaguchi N, Rhi GS. Antioxidative and antihypertensive effects of Welsh onion on rats fed with a high-fat high-sucrose diet. Biosci Biotechnol Biochem. 2005;69(7):1311-1317. doi:10.1271/bbb.69.1311.
37. Kabrah MA, Faidah HS, Ashshi AM, Turkistani MSA. Antibacterial Effect of Onion. Sch J App Med Sci. 2016;4:4128-4133.
38. Egwim E. Hypoglycemic potencies of crude ethanolic extracts of cashew roots and unripe pawpaw fruits in guinea pigs and rats. J Herb Pharmacother. 2005;5(1):27-34.
39. Alexander-Lindo RL, Morrison EY, Nair MG. Hypoglycaemic effect of stigmast-4-en-3-one and its corresponding alcohol from the bark of Anacardium occidentale (cashew). Phytother Res. 2004;18(5):403-407. doi:10.1002/ptr.1459.
40. Okpashi VE, Bayim BP, Obi-Abang M. Comparative effects of some medicinal plants: Anacardium occidentale, Eucalyptus globulus, Psidium guajava, and Xylopia aethiopica extracts in alloxan-induced diabetic male wistar albino rats. Biochem Res Int. 2014;2014:203051. doi:10.1155/2014/203051.
41. Ojewole JA. Laboratory evaluation of the hypoglycemic effect of Anacardium occidentale Linn (Anacardiaceae) stem-bark extracts in rats. Methods Find Exp Clin Pharmacol. 2003;25(3):199-204. doi:10.1358/mf.2003.25.3.769640.
42. Fagbohun TR, Odufuwa KT. Hypoglycemic effect of methanolic extract of Anacardium occidentale leaves in alloxan-induced diabetic rats. Niger J Physiol Sci. 2010;25(1):87-90.
43. Khosla P, Bhanwara S, Singh, J, Seth S, Srivastava RK. A study of hyperglycemia effects of A. indica (Neem) in normal and alloxan diabetic rabbits. Indian Journal of Physiology & Pharmacology. 2000;44:69–74.
44. Bopana KN, Kannan J, Gadgil S, Balaram R Rathod SP. Antidiabetic and antihyperlipidaemic effects of neem seed kernel powder on alloxan diabetic rabbits. Indian Journal of Pharmacology. 1997;29(3):162–16.
45. Govindachari TR, Sandhya G, Ganeshraj SP. Simple method for the isolation of azadirachtin by preparative high-performance liquid chromatography. Journal of Chromatography. 1990;513:389–391. doi:10.1016/S0021-9673(01)89462-0.
46. Ara I, Siddiqui BS, Faizi S Siddiqui S. Diterpenoids from the stem bark of Azadirachta indica. Phytochemistry. 1989;28(4):1177–1180. doi:10.1016/0031-9422(89)80204-3.
47. Basak SP, Chakroborty DP. Chemical investigation of Azadirachta indica leaf (M. azadirachta). Journal of the Indian Chemical Society. 1969;45:466–467.
48. Atangwho IJ, Ebong PE, Eyong EU, Asmawi MZ, Ahmad M. Synergistic antidiabetic activity of Vernonia amygdalina and Azadirachta indica: biochemical effects and possible mechanism. J Ethnopharmacol. 2012;141(3):878-887. doi:10.1016/j.jep.2012.03.041.
49. Jaiswal YS, Tatke PA, Gabhe SY, Vaidya AB. Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. J Tradit Complement Med. 2016;7(4):421-427. doi:10.1016/j.jtcme.2016.11.007.
50. Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Joshi BN. Antidiabetic properties of Azardiracta indica and Bougainvillea spectabilis: In vivo Studies in murine diabetes model. Evid Based Complement Alternat Med. 2011;2011:561625. doi:10.1093/ecam/nep033.
51. Sunarwidhi AL, Sudarsono S, Nugroho AE. Hypoglycemic effect of combination of Azadirachta indica A. Juss. and Gynura procumbens (Lour.) Merr. Ethanolic Extracts Standardized by Rutin and Quercetin in Alloxan-induced Hyperglycemic Rats. Adv Pharm Bull. 2014 Dec;4(2):613-618. doi: 10.5681/apb.2014.090.
52. Pingali U, Ali MA, Gundagani S, Nutalapati C. Evaluation of the effect of an aqueous extract of Azadirachta indica (Neem) leaves and twigs on glycemic control, endothelial dysfunction and systemic inflammation in subjects with Type 2 diabetes mellitus - A randomized, double-blind, placebo-controlled clinical study. Diabetes Metab Syndr Obes. 2020;13:4401-4412. doi:10.2147/DMSO.S274378.
53. Sanni O, Erukainure OL, Chukwuma CI, Koorbanally NA, Ibeji CU, Islam MS. Azadirachta indica inhibits key enzyme linked to type 2 diabetes in vitro, abates oxidative hepatic injury and enhances muscle glucose uptake ex vivo. Biomed Pharmacother. 2019;109:734-743. doi:10.1016/j.biopha.2018.10.171.
54. Sriraksa N, Kongsui R, Thongrong S, Duangjai A, Hawiset T. Effect of Azadirachta indica flower extract on functional recovery of sciatic nerve crush injury in rat models of DM. Exp Ther Med. 2019;17(1):541-550. doi: 10.3892/etm.2018.6931.
55. Halim EM. Lowering of blood sugar by water extract of Azadirachta indica and Abroma augusta in diabetes rats. Indian J Exp Biol. 2003;41(6):636-640.
56. Gutierrez RM, Gómez YG, Guzman MD. Attenuation of nonenzymatic glycation, hyperglycemia, and hyperlipidemia in streptozotocin-induced diabetic rats by chloroform leaf extract of Azadirachta indica. Pharmacogn Mag. 2011;7(27):254-259. doi:10.4103/0973-1296.84243.
57. Oluwole BA, Laura Z, Olufunke OD, Oluwafunmike SA, Luciana D, Ezekiel CM. Ameliorative effects of ethanolic leaf extract of Azadirachta indica on renal histologic alterations in streptozotocin-induced diabetic rats. Am J Chin Med. 2011;39(5):903-916. doi:10.1142/S0192415X11009299.
58. Ahmed AA, Kita A, Nem´s A, Miedzianka J, Foligni R, Abdalla AM, et al. Tree-to-tree variability in fruits and kernels of a Balanites aegyptiaca (L.) Del. population grown in Sudan. Trees. 2019;34(1) doi:10.1007/s00468-019-01901-x.
59. Yadav JP, Panghal M. Balanites aegyptiaca (L.) Del. (Hingot): A review of its traditional uses, phytochemistry and pharmacological properties. Int. J. Green Pharm. 2010;4(3):140–146. doi:
60. Maksoud SA, El Hadidi M.N. The flavonoids of Balanites aegyptiaca (Balanitaceae) from Egypt. Plant Syst. Evol. 1988;160:153–158. doi:
61. Sagna MB, Diallo A, Sarr PS, Ndiaye O, Goner D, Guisse A. Biochemical composition and nutritional value of Balanites aegyptiaca (L.) Del fruit pulps from Northen Ferlo in Senegal. Afr. J. Biotechnol. 2014;13(2):336–342.
62. Farid H, Haslinger E, Kunert O. New steroidal glycosides from Balanites aegyptiaca. Helv. Chim. Acta. 2002;85(4):1019–1026. doi:10.1002/1522-2675(200204)85:4%3C1019::AID-HLCA1019%3E3.0.CO;2-S.
63. Hassanin KMA, Mahmoud MO, Hassan HM, Abdel-Razik AH, Aziz LN, Rateb ME. Balanites aegyptiaca ameliorates insulin secretion and decreases pancreatic apoptosis in diabetic rats: Role of SAPK/JNK pathway. Biomed Pharmacother. 2018;102:1084-1091. doi:10.1016/j.biopha.2018.03.167.
64. Abou Khalil NS, Abou-Elhamd AS, Wasfy SI, El Mileegy IM, Hamed MY, Ageely HM. Antidiabetic and antioxidant impacts of desert date (Balanites aegyptiaca) and parsley (Petroselinum sativum) aqueous extracts: Lessons from experimental rats. J Diabetes Res. 2016;2016:8408326. doi:10.1155/2016/8408326.
65. Rashad H, Metwally FM, Ezzat SM, Salama MM, Hasheesh A, Abdel Motaal A. Randomized double-blinded pilot clinical study of the antidiabetic activity of Balanites aegyptiaca and UPLC-ESI-MS/MS identification of its metabolites. Pharm Biol. 2017;55(1):1954-1961. doi:10.1080/13880209.2017.1354388.
66. Al-Malki AL, Barbour EK, Abulnaja KO, Moselhy SS. Management of hyperglycaemia by ethyl acetate extract of Balanites aegyptiaca (Desert Date). Molecules. 2015;20(8):14425-14434. doi:10.3390/molecules200814425.
67. Suresh S, Waly MI, Rahman MS, et al. Broccoli (Brassica oleracea) reduces oxidative damage to pancreatic tissue and combats hyperglycaemia in diabetic rats. Prev Nutr Food Sci. 2017;22(4):277-284. doi:10.3746/pnf.2017.22.4.277.
68. Amssayef A, Eddouks M. Antihyperglycemic effect of the moroccan collard green (Brassica oleracea var. viridis) in streptozotocin-induced diabetic rats published online ahead of print, 2020 Sep 29. Endocr Metab Immune Disord Drug Targets. 2020;10.2174/1871530320666200929141140.doi:10.2174/1871530320666200929141140.
69. Assad T, Khan RA, Feroz Z. Evaluation of hypoglycemic and hypolipidemic activity of methanol extract of Brassica oleracea. Chin J Nat Med. 2014;12(9):648-653. doi:10.1016/S1875-5364(14)60099-6.
70. Lim JH, Park KJ, Jeong JW, Park JJ, Kim BK, Kim JC, et al. Antioxidant activity and antioxidant compounds in edible sprouts. FASEB J 27: lb260 2013
71. Baenas N, Moreno DA, García-Viguera C. Selecting sprouts of brassicaceae for optimum phytochemical composition. J Agric Food Chem. 2012;60(45):11409-11420. doi:10.1021/jf302863c.
72. Choi SH, Ryu DK, Park SY, Ann KG, Lim YP, An GH. Composition analysis between kohlrabi (Brassica oleracea var. gongylodes) and radish (Raphanus sativus). Kor J Hort Sci Technol. 2010;28:469-475.
73. Sharma I, Aaradhya M, Kodikonda M, Naik PR. Antihyperglycemic, antihyperlipidemic and antioxidant activity of phenolic rich extract of Brassica oleraceae var gongylodes on streptozotocin induced Wistar rats. Springerplus. 2015;4:212. doi:10.1186/s40064-015-0948-0.
74. Miranda-Osorio PH, Castell-Rodríguez AE, Vargas-Mancilla J, et al. Protective Action of Carica papaya on β-Cells in Streptozotocin-Induced Diabetic Rats. Int J Environ Res Public Health. 2016;13(5):446. doi:10.3390/ijerph13050446.
75. Juárez-Rojop IE, Díaz-Zagoya JC, Ble-Castillo JL, et al. Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2012;12:236. doi:10.1186/1472-6882-12-236
76. Raffaelli F, Nanetti L, Montecchiani G, et al. In vitro effects of fermented papaya (Carica papaya, L.) on platelets obtained from patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2015;25(2):224-229. doi:10.1016/j.numecd.2014.10.013.
77. Sasidharan S, Sumathi V, Jegathambigai NR, Latha LY. Antihyperglycaemic effects of ethanol extracts of Carica papaya and Pandanus amaryfollius leaf in streptozotocin-induced diabetic mice. Nat Prod Res. 2011;25(20):1982-1987. doi:10.1080/14786419.2010.523703.
78. Maniyar Y, Bhixavatimath P. Antihyperglycemic and hypolipidemic activities of aqueous extract of Carica papaya Linn. leaves in alloxan-induced diabetic rats. J Ayurveda Integr Med. 2012;3(2):70-74. doi:10.4103/0975-9476.96519.
79. Danese C, Esposito D, D'Alfonso V, Cirene M, Ambrosino M, Colotto M. Plasma glucose level decreases as collateral effect of fermented papaya preparation use. Clin Ter. 2006;157(3):195-198. PMID: 16900843.
80. Oboh G, Akinbola IA, Ademosun, AO, Sanni, DM, Odubanjo OV, Olasehinde TA, et al. Essential oil from clove bud (Eugenia aromatic Kuntze) inhibit key enzymes relevant to the management of Type-2 diabetes and some pro-oxidant induced lipid peroxidation in rats pancreas in vitro. J. Oleo Sci. 2015;64(7):775-782. doi: 10.5650/jos.ess14274.
81. Canal JR, Torres, MD, Romero A, Pérez, C. A chloroform extract obtained from a decoction of Ficus carica leaves improves the cholesterolaemic status of rats with streptozotocin-induced diabetes. Acta Physiologica Hungarica. 2000;87(1):71–76.
82. Arafa EA, Hassan W, Murtaza G, Buabeid MA. Ficus carica and Sizigium cumini regulate glucose and lipid parameters in high-fat diet and streptozocin-induced rats. Journal of Diabetes Research Volume 2020;6745873. doi:
83. Irudayaraja SS, Christudasa S, Antonyb S, Duraipandiyanc V, Abdullahc AN, Ignacimuthua S. Protective effects of Ficus carica leaves on glucose and lipids levels, carbohydrate metabolism enzymes and b-cells in type 2 diabetic rats. Pharmaceutical biology. 2017;55(1):1074–1081. doi: 10.1080/13880209.2017.1279671.
84. Farsi E, Ahmad M, Hor SY, et al. Standardized extract of Ficus deltoidea stimulates insulin secretion and blocks hepatic glucose production by regulating the expression of glucose-metabolic genes in streptozitocin-induced diabetic rats. BMC Complement Altern Med. 2014;14:220. doi:10.1186/1472-6882-14-220.
85. Abdel-Rahman RF, Ezzat SM, Ogaly HA, et al. Ficus deltoidea extract down-regulates protein tyrosine phosphatase 1B expression in a rat model of type 2 diabetes mellitus: a new insight into its antidiabetic mechanism. J Nutr Sci. 2020;9:e2. doi:10.1017/jns.2019.40.
86. Kalman DS, Schwartz HI, Feldman S, Krieger DR. Efficacy and safety of Elaeis guineensis and Ficus deltoidea leaf extracts in adults with pre-diabetes. Nutr J. 2013;12:36. doi:10.1186/1475-2891-12-36.
87. Shrotri DS, Aiman R. The relationship of the post-absorptive state to the hypoglycemic action studies on Ficus bengalensis and Ficus glomerata. Indian J Med Res. 1960;48:162-168. PMID: 14446232.
88. Vasudevan K, Sophia D, Balakrishanan S, Manoharan S. Antihyperglycemic and antilipidperoxidative effects of Ficus racemosa (Linn.) bark extracts in alloxan induced diabetic rats. J Med Sci. 2017;7(3):330–338. doi: 10.3923/jms.2007.330.338.
89. Sophia D, Manoharan S. Hypolipidemic activities of Ficus racemosa Linn. bark in alloxan induced diabetic rats. Afr J Tradit Complement Altern Med. 2007;4(3):279-288. doi:10.4314/ajtcam.v4i3.31220.
90. Patil KS, Warke PD, Chaturvedi SC. Hypoglycemic properties of Ficusglomerata fruits in alloxan-induced diabetic rats. J Nat Remidies. 6(2):120–123.
91. Wadood N, Nisar M, Rashid A, Wadood A, Gul-Nawab, Khan A. Effect of a compound recipe (medicinal plants) on serum insulin levels of alloxan induced diabetic rabbits. J Ayub Med Coll Abbottabad. 2007;19(1):32-38. PMID: 17867477.
92. Kar A, Choudhary BK, Bandyopadhyay NG. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J Ethnopharmacol. 2003;84(1):105-108. doi:10.1016/s0378-8741(02)00144-7.
93. Mandal SC, Mukharjee PK, Saha K, Das J, Pal M, Saha BP. Hypoglycemicactivity of Ficus racemosa L. (Moraceae) leaves in streptozotocin-induced diabeticrats. Nat Prod Sci. 1997;3(1):38–41.
94. Patil VV, Pimprikar RB, Sutar NG, Barhate AL, Patil LS, Patil AP, et al. Anti-hyperglycemic activity of Ficus racemosa Linn leaves. J Pharm Res. 2009;(2):54–57.
95. Rahman NN, Khan M, Hasan R. Bioactive components from Ficus glomerata. Pure Appl Chem. 1994;66(10/11):2287–2290. doi:
96. Bwititi P, Musabayane CT. The effect of plant extracts on plasma glucose in rats. Acta Med Biol. 1997;45(4):167-169.
97. Musabayane CT, Gondwe M, Kamadyaapa DR, Chuturgoon AA, Ojewole JA. Effects of Ficus thonningii (Blume) Morarceae. stem-bark ethanolic extract on blood glucose, cardiovascular and kidney functions of rats, and on kidney cell lines of the proximal (LLC-PK1) and distal tubules (MDBK). Ren Fail. 2007;29(4):389-397. doi:10.1080/08860220701260735.
98. Minakawa M, Kawano A, Miura Y, Yagasaki K. Hypoglycemic effect of resveratrol in type 2 diabetic model db/db mice and its actions in cultured L6 myotubes and RIN-5F pancreatic β-cells. J Clin Biochem Nutr. 2011;48(3):237-244. doi:10.3164/jcbn.10-119.
99. Heim M, Johnson J, Boess F, et al. Phytanic acid, a natural peroxisome proliferator-activated receptor (PPAR) agonist, regulates glucose metabolism in rat primary hepatocytes. FASEB J. 2002;16(7):718-720. doi:10.1096/fj.01-0816fje.
100. Noor HS, Ismail NH, Kasim N, Mediani A, Zohdi RM, Ali AM et al. Urinary Metabolomics and Biochemical Analysis of Antihyperglycemic Effect of Ficus deltoidea Jack Varieties in Streptozotocin-Nicotinamide-Induced Diabetic Rats. Appl Biochem Biotechnol. 2020;192(1):1-21. doi: 10.1007/s12010-020-03304-y.
101. Nurdiana S, Goh YM, Ahmad H, et al. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin. BMC Complement Altern Med. 2017;17(1):290. doi:10.1186/s12906-017-1762-8.
102. Uzzaman R, Ghaffar M. Anti-diabetic and hypolipidemic effects of extract from the seed of Gossypium herbaceum L. in Alloxan-induced diabetic rabbits. Pak J Pharm Sci. 2017;30(1):75-86. PMID: 28603116.
103. Miaffo D, Ntchapda F, Kamgue OG, Mahamad AT, Kamanyi A. Glucose-lowering potential of Guiera senegalensis roots in a diabetic rat model. Avicenna J Phytomed. 2020;10(6):653-663. PMID: 33299821.
104. Ibrahim MA, Islam MS. Butanol fraction of Khaya senegalensis root modulates β-cell function and ameliorates diabetes-related biochemical parameters in a type 2 diabetes rat model. J Ethnopharmacol. 2014;154(3):832-838. doi: 10.1016/j.jep.2014.05.011.
105. Ibrahim MA, Koorbanally NA, Islam MS. Antioxidative activity and inhibition of key enzymes linked to type-2 diabetes (α-glucosidase and α- amylase) by Khaya senegalensis. Acta Pharm. 2004;64(3):311-324. doi: 10.2478/acph-2014-0025.
106. Bothon FT, Debiton E, Avlessi F, Forestier C, Teulade JC, Sohounhloue DK. In vitro biological effects of two anti-diabetic medicinal plants used in Benin as folk medicine. BMC Complement Altern Med. 2013;13:51. doi:10.1186/1472-6882-13-51.
107. Arayne MS, Sultana N, Mirza AZ, Zuberi MH, Siddiqui FA. In vitro hypoglycemic activity of methanolic extract of some indigenous plants. Pak J Pharm Sci. 2007;20(4):268-273. PMID: 17604247.
108. Singh S, Verma N, Karwasra R, Kalra P, Kumar P, Gupta YK. Safety and efficacy of hydroalcoholic extract from Lawsonia inermisleaves on lipid profile in alloxan-induced diabetic rats. Ayu. 2015;36(1):107–112. doi: 10.4103/0974-8520.168999.
109. Ganogpichayagrai A, Palanuvej C, Ruangrungsi N. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves. J Adv Pharm Technol Res. 2017;8(1):19–24. doi: 10.4103/2231-4040.197371.
110. Ojo OA, Afon AA, Ojo AB, Ajiboye BO, Oyinloye BE, Kappo AB. Inhibitory effects of solvent-partitioned fractions of two Nigerian herbs (Spondias mombin Linn. and Mangifera indica L.) on α-Amylase and α- Glucosidase. Antioxidants (Basel).2018;7(6):73. doi: 10.3390/antiox7060073.
111. Villas Boas GR, Rodrigues Lemos JM, de Oliveira MW, et al. Aqueous extract from Mangifera indica Linn. (Anacardiaceae) leaves exerts long-term hypoglycemic effect, increases insulin sensitivity and plasma insulin levels on diabetic Wistar rats. PLoS One. 2020;15(1):e0227105. doi:10.1371/journal.pone.0227105.
112. Saleem M, Tanvir M, Akhtar MF, Iqbal M, Saleem A. Antidiabetic Potential of Mangifera indica L. cv. Anwar Ratol Leaves: Medicinal Application of Food Wastes. Medicina (Kaunas). 2019;55(7):353. doi:10.3390/medicina55070353.
113. Irondi EA, Oboh G, Akindahunsi AA. Antidiabetic effects of Mangifera indica Kernel Flour-supplemented diet in streptozotocin-induced type 2 diabetes in rats. Food Sci Nutr. 2016;4(6):828-839. doi: 10.1002/fsn3.348.
114. Villarruel-López A, López-de la Mora DA, Vázquez-Paulino OD, et al. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement Altern Med. 2018;18(1):127. doi:10.1186/s12906-018-2180-2.
115. López M, Ríos-Silva M, Huerta M, et al. Effects of Moringa oleifera leaf powder on metabolic syndrome induced in male Wistar rats: a preliminary study. J Int Med Res. 2018;46(8):3327-3336. doi:10.1177/0300060518781726.
116. Paula PC, Sousa DO, Oliveira JT, et al. A Protein isolate from Moringa oleifera leaves has hypoglycemic and antioxidant effects in alloxan-induced diabetic mice. Molecules. 2017;22(2):271. doi:10.3390/molecules22020271.
117. Jaiswal D, Kumar Rai P, Kumar A, Mehta S, Watal G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J Ethnopharmacol. 2009;123(3):392-396. doi:10.1016/j.jep.2009.03.036.
118. Yassa HD, Tohamy AF. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats. Acta Histochem. 2014;116(5):844-854. doi:10.1016/j.acthis.2014.02.002.
119. Abd Eldaim MA, Shaban Abd Elrasoul A, Abd Elaziz SA. An aqueous extract from Moringa oleifera leaves ameliorates hepatotoxicity in alloxan-induced diabetic rats. Biochem Cell Biol. 2017;95(4):524-530. doi:10.1139/bcb-2016-0256.
120. Khan W, Parveen R, Chester K, Parveen S, Ahmad S. Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and In Vivo GC-MS metabolomics. Front Pharmacol. 2017;8:577. doi:10.3389/fphar.2017.00577.
121. Olayaki LA, Irekpita JE, Yakubu MT, Ojo OO. Methanolic extract of Moringa oleifera leaves improves glucose tolerance, glycogen synthesis and lipid metabolism in alloxan-induced diabetic rats. J Basic Clin Physiol Pharmacol. 2015;26(6):585-593. doi:10.1515/jbcpp-2014-0129.
122. Omodanisi EI, Aboua YG, Chegou NN, Oguntibeju OO. Hepatoprotective, Antihyperlipidemic, and Anti-inflammatory Activity of Moringa oleifera in Diabetic-induced Damage in Male Wistar Rats. Pharmacognosy Res. 2017;9(2):182-187. doi:10.4103/0974-8490.204651.
123. Alejandra Sánchez-Muñoz M, Valdez-Solana MA, Campos-Almazán MI, et al. Streptozotocin-induced adaptive modification of mitochondrial supercomplexes in liver of wistar rats and the protective effect of Moringa oleifera lam. Biochem Res Int. 2018;2018:5681081. doi:10.1155/2018/5681081.
124. Olurishe C, Kwanashie H, Zezi A, Danjuma N, Mohammed B. Chronic administration of ethanol leaf extract of Moringa oleifera Lam. (Moringaceae) may compromise glycaemic efficacy of Sitagliptin with no significant effect in retinopathy in a diabetic rat model. J Ethnopharmacol. 2016;194:895-903. doi:10.1016/j.jep.2016.10.065.
125. Tang Y, Choi EJ, Han WC, et al. Moringa oleifera from cambodia ameliorates oxidative stress, hyperglycemia, and kidney dysfunction in Type 2 diabetic mice. J Med Food. 2017;20(5):502-510. doi:10.1089/jmf.2016.3792.
126. Al-Malki AL, El Rabey HA. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed Res Int. 2015;2015:381040. doi:10.1155/2015/381040.
127. Jaja-Chimedza A, Zhang L, Wolff K, et al. A dietary isothiocyanate-enriched moringa (Moringa oleifera) seed extract improves glucose tolerance in a high-fat-diet mouse model and modulates the gut microbiome. J Funct Foods. 2018;47:376-385. doi:10.1016/j.jff.2018.05.056.
128. Wang F, Zhong HH, Chen WK, et al. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds. Nat Prod Res. 2017;31(16):1869-1874. doi:10.1080/14786419.2016.1263846.
129. Raafat K, Hdaib F. Neuroprotective effects of Moringa oleifera: Bio-guided GC-MS identification of active compounds in diabetic neuropathic pain model published online ahead of print, 2017 Dec 12.. Chin J Integr Med. 2017;10.1007/s11655-017-2758-4. doi:10.1007/s11655-017-2758-4.
130. Gupta R, Mathur M, Bajaj VK, et al. Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J Diabetes. 2012;4(2):164-171. doi:10.1111/j.1753-0407.2011.00173.x.
131. Ogunyinka BI, Oyinloye BE, Osunsanmi FO, Kolanisi U, Opoku AR, Kappo AP. Protein isolate from Parkia biglobosa seeds improves dyslipidaemia and cardiac oxidative stress in Streptozotocin-induced diabetic rats. Antioxidants (Basel). 2019;8(10):481. doi:10.3390/antiox8100481.
132. Ibrahim MA, Habila JD, Koorbanally NA, Islam MS. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J Ethnopharmacol. 2016;183:103-111. doi:10.1016/j.jep.2016.02.018.
133. Sule O, Godwin J, Abdu AR. Preliminary study of hypoglycemic effect of locust bean (Parkia biglobosa) on wistar albino rat. J. Sci. Res. Rep. 2015;4:467-472. doi:10.9734/JSRR/2015/8044.
134. Akinloye O, Akinmoladun AC, Farombi EO. Modulatory effect of Psidium guajava linn and ocimum gratissimum Linn on lipid profile and selected biochemical indices in rabbits fed high cholesterol diet. J. Complement. Integr. Med. 2010;7. doi:10.2202/1553-3840.1336.
135. Freire JM, Abreu CM, Duarte SM, Borges AF, Ribeiro LA. Evaluation of the protective effect of guava fruits and leaves on oxidative stress. Acta Sci. Biol. Sci. 2014;36(1):35–40. doi: 10.4025/actascibiolsci.v36i1.19839.
136. Oh WK, Lee CH, Lee MS, et al. Antidiabetic effects of extracts from Psidium guajava. J Ethnopharmacol. 2005;96(3):411-415. doi:10.1016/j.jep.2004.09.041.
137. Bahrani AHM, Zaheri H, Soltani N, Kharazmi F. Effect of the administration of Psidium guava leaves on blood glucose, lipid profiles and sensitivity of the vascular mesenteric bed to Phenylephrine in streptozotocin-induced diabetic rats. J. Diabetes Mellit. 2012;(2):138–145. doi: 10.4236/jdm.2012.21023.
138. Shen SC, Cheng FC, Wu NJ. Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats. Phytother Res. 2008;22(11):1458-1464. doi:10.1002/ptr.2476.
139. Ogueri CC, Elekwa I, Ude VC, Ugbogu AE. Effect of aqueous extract of guava (Psidium guajava) leaf on blood glucose and liver enzymes in alloxan induced diabetic rats. Br. J. Pharm. Res. 2014;(4)9:1079-1087. doi: 10.9734/BJPR/2014/7244.
140. Shakeera BM, Sujatha K, Sridharan G, Manikandan R. Antihyperglycemic and antihyperlipidemic potentials of Psidium guajava in alloxan-induced diabetic rats. Asian J. Pharm. Clin. Res. 2013;6:88–89.
141. Soman S, Rauf AA, Indira M, Rajamanickam C. Antioxidant and antiglycative potential of ethyl acetate fraction of Psidium guajava leaf extract in streptozotocin-induced diabetic rats. Plant Foods Hum Nutr. 2010;65(4):386-391. doi:10.1007/s11130-010-0198-9.
142. Musabayane CT, Bwititi PT, Ojewole JA. Effects of oral administration of some herbal extracts on food consumption and blood glucose levels in normal and streptozotocin-treated diabetic rats. Methods Find Exp Clin Pharmacol. 2006;28(4):223-228. doi:10.1358/mf.2006.28.4.990202.
143. Asante DB, Effah-Yeboah E, Barnes P, et al. Antidiabetic Effect of Young and Old Ethanolic Leaf Extracts of Vernonia amygdalina: A Comparative Study. J Diabetes Res. 2016;2016:8252741. doi:10.1155/2016/8252741.
144. Ong KW, Hsu A, Song L, Huang D, Tan BK. Polyphenols-rich Vernonia amygdalina shows anti-diabetic effects in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2011;133(2):598-607. doi:10.1016/j.jep.2010.10.046.
145. Nwanjo HU. Efficacy of aqueous leaf extract of vernonia amygdalina on plasma lipoprotein and oxidative status in diabetic rat models. Niger J Physiol Sci. 2005;20(1-2):39-42. PMID: 17220925.
146. Ibrahim MA, Islam MS. Effects of butanol fraction of Ziziphus mucronata root ethanol extract on glucose homeostasis, serum insulin and other diabetes-related parameters in a murine model for type 2 diabetes. Pharm Biol. 2017;55(1):416-422. doi:10.1080/13880209.2016.1242632.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.