ANTIBACTERIAL INFLUENCE OF SILVER NANOPARTICLES ON MULTI-RESISTANT STRAINS OF K. PNEUMONIAE ISOLATED AT HOSPITALS

Introduction. Overuse and misuse of antibiotics in humans, animals, and agriculture has led to the widespread rise of antibiotic resistance and strengthened nosocomial pathogens’ impact. Klebsiella pneumoniae became an increasing threat to public health. Nanomaterials are promising alternatives to conventional antibiotics in the fight against multi-resistant germs. Silver nanoparticles are well-known metallic nanoparticles with antimicrobial activity.

Our research aimed to evaluate the spreading of K. pneumonia resistant to antibiotics at hospital and assess the effectiveness of Ag NPs against multi-resistant clinical strains of K. pneumoniae.

Material and methods. K. pneumoniae strains were isolated and identified with the use of conventional bacteriological techniques. Susceptibility of the microorganisms was assessed to inhibitors of β-lactamases, carbapenems, macrolides, oxazolidinones, and other groups of antibiotics with use Kirby-Bauer disk diffusion method. The capability of AgNPs to inhibit attachment and multiplication of the K. pneumoniae multi-resistant strains was tested with the use of serial microdilution method, resazurin assay, and SEM.

Results. K. pneumoniae was isolated from 13.7% of samples predominantly at the microbial association (97.5%). The microorganisms were resistant to five or more antibiotics in 73.2% of cases. AgNPs possess antimicrobial activity against tested strains at concentrations varied from 1.25 µg/ml to 2.5 µg/ml and kill all germs in 3 hours of incubation. AgNPs inhibited biofilm formation at initial stages and destroyed the mature (2 days) biofilm with Ag NPs treatment at concentrations 20-40 µg/ml. The effectiveness of mature K. pneumoniae biofilm treatment with AgNPs depended on biofilm age. The SEM images of the two-days biofilm reveal lysis of the bacterial cells after the cocultivation with Ag NPs but SEM analysis detected the maintaining of the three-dimensional structure in the case of a five-day biofilm after cocultivation with AgNPs.

Conclusions. The distribution of K. pneumonia among patients with laryngeal pathology and its sensitivity to eleven antibiotics were examined. There was revealed the high rate of K. pneumonia multi-resistant strains. Ag NPs have strong antibacterial and anti-
biofilm potential against multi-resistant \textit{K. pneumoniae}. Therefore, our results highlight that the Ag NPs have promising antimicrobial and anti-biofilm abilities against multi-resistant clinical strains of \textit{K. pneumoniae}.

\textbf{Keywords:} antimicrobial activity, silver nanoparticles, antibiotic, sensitivity, \textit{K. pneumoniae}.

\textbf{Corresponding author:}
Viktoriia M. Holubnycha, Department of Public Health, Academic and Research Medical Institute, Sumy State University, Sumy, Ukraine
e-mail: v.golubnicha@med.sumdu.edu.ua

\begin{itemize}
\item\textbf{Keywords:} antibiotic, sensitivity, \textit{K. pneumoniae}.
\end{itemize}
K. pneumonia. НЧ Ag may have a potential antibacterial and anti-biofilm potential against multi-resistant K. pneumoniae. This is why in our study, we focused on investigating the antibacterial properties of Ag NPs against K. pneumoniae strains isolated at hospitals.

Material and methods. During 2019–2021, we examined 300 samples from patients with laryngeal pathology. Patients were comprehensively examined following standards of care. To determine the microbial profile of the examined biotopes microbiological study of nasopharyngeal swabs was performed in the bacteriological lab of Sumy State University. The sensitivity of the microbes to antibiotics was assessed with the use Kirby-Bauer method on Muller-Hinton agar. Antimicrobial susceptibility was assessed to inhibitors of β-lactamases, carbapenems, macrolides, oxazolidinones, and other groups with the use of the recommendation of the National Committee for Clinical Laboratory Standards. To evaluate the influence of silver nanoparticles on the K. pneumoniae viability and biofilm formation, we selected multi-resistant microorganisms.

Introduction/Вступ

Klebsiella pneumonia is one of the increasingly common species among Enterobacteria spp. The bacteria are often detected in foods, sewage, soil, plants, and the gastrointestinal tracts of animals. It takes the second position after *E. coli* as a pathogen responsible for various community-associated and nosocomial infections. The pathogen is responsible for a comprehensive list of human diseases ranging from wound infections to septicemia, and these infections may impact human health. Inadequate use of antibiotics facilitates the development of broad-spectrum drug resistance among microorganisms. It leads to a rise in hospital-associated infections numbers, and it increases the mortality and financial burden on public health as well. Several studies indicate *K. pneumoniae* is associated with high rates of antibiotic resistance. In spite of the importance of *K. pneumoniae* as a pathogen responsible for sepsis and other infections, the data about its meaning as a causative agent and susceptibility to antimicrobial substances are limited. It is also known as a pathogen with a high capability to biofilm formation due to various virulence factors. Infections caused by biofilm-forming bacteria are difficult to treat; therefore, searching for new antimicrobials with antibiofilm activity is a hot topic for public health.

Applying new approaches and new materials in medical practice is crucial to dealing with antibiotic resistance. The antimicrobial properties of metals have been known for a long time. However, their use as antimicrobials was limited due to their toxicity. Due to the development of nanomedicine, the interest in nanometals, especially silver and its salts, has increased. Silver nanoparticles possess several antimicrobial mechanisms; thus, bacteria can form the resistance slightly. Apart from that, the metals are stable under conditions currently found in the industry. Over the past few decades, there was a huge rise in information on AgNPs antimicrobial activity. However, several unresolved issues still stay. There are several drawbacks such as an easy aggregation of nanoparticles, the uncontrolled release of silver ions, and poor stability of solution that need to be solved.

Thus, the purpose of our research was to evaluate the spreading of *K. pneumoniae* strains resistant to antibiotics at hospitals and assess the antimicrobial effectiveness of the Ag NPs against them.

DOI: https://doi.org/10.21272/eumj. 2021;9(4):332-341
The AgNPs were prepared at NanoWave (Warsaw, Gdansk, Poland) and previously described [9] at 3 g/L silver concentration. Nanoparticles were cube-shaped with size from 80 nm to 800 nm and smaller silver nanoparticles of spherical shape adhered on it. EDX confirmed the chemical purity of obtained AgNPs with a residual quantity of Cl and Na.

The silver nanoparticles’ antimicrobial activity against K. pneumoniae strains was examined with determination of the minimal inhibitory concentration (MIC), the kill kinetic, inhibition of biofilm formation, and influence on biofilm viability.

MIC was assessed with the use of the broth microdilution method. At first, the serial dilutions of the AgNPs were prepared, and 20 µl of each concentration was put into a polystyrene 96-well plate. Inoculum of the fresh cultures of K. pneumoniae was prepared in Mueller-Hinton broth at concentration 5×10⁵ CFU/ml. Then 180 µl of bacterial suspension was added to the silver solution to reach the desired concentrations (0.31–40 µg/ml). Plates were incubated at 37 °C for 24 h. The assays were performed in triplicate. The MIC was the lowest concentration of the AgNPs completely inhibited visual growth of germs.

The time-dependent dynamic of bacteria-killing was conducted at bacteria concentration 5×10⁶ CFU/ml and AgNPs concentration equal MIC. Bacteria incubation in Muller-Hinton broth at 37 °C has followed the aliquots (10 µl) inoculation from each well onto Mueller-Hinton agar in 1, 3, 6, 12, 24 hours. Then formed colonies were counted.

The influence of AgNPs on biofilm formation was detected by assessing the formed biofilm biomass with gentian violet staining. The bacteria were incubated in 96-well microtiter plates containing AgNPs solutions at the half and 1 MIC concentrations for 24 hours. Then non-adherent cells were removed from the plate, and the biofilm mass attached to the wells was stained with 0.1% crystal violet (30 minutes). After that, the dye was dissolved with ethanol. The optical density of solubilized crystal violet was measured by the Thermo Scientific Multiscan FC microplate photometer ESW 1.01.16 (wavelength 595 nm). All tests were done in triplicate. The coefficient of the microbial biomass reduction was calculated as a proportion of the optical density of the tested sample to the optical density of control in the percentage equivalent.

The microorganisms were incubated initially for different time intervals (48 and 120 hours) to examine the silver nanoparticles effect on preformed biofilms. Then AgNPs at concentrations 10, 20, 30, and 40 µg/ml were added to the wells and incubated for 24 h. It was followed the resazurin assay and crystal violet staining. The percentage of cell viability was calculated according with protocol provided by manufacturer.

AgNPs action on the biofilms structures was assessed with SEM. The glass slides were submerged into inoculums of K. pneumoniae in Mueller-Hinton broth and were incubated for 0, 48, 120 h. After that, glass slides were incubated with AgNPs at concentrations 10, 20, 30, and 40 µg/ml for 24 h. Then they were fixed in 2.5% glutaraldehyde, washed in buffer, and dehydrated with a series of 50, 70, 90, and 100% ethanol. The glass slides were coated with silver and examined under scanning electron microscopy (SEM, Hitachi S-3000N).

One-way ANOVA multiple comparisons with the Tukey’s post-hoc analysis was used to assess the difference between groups using GraphPad Prism 8.0 software. p value of < 0.05 was considered statistically significant.

Results. We have examined 300 samples from patients with laryngeal pathology and isolated 41 strains of K. pneumoniae (13.7%). The microorganisms were isolated predominantly in a microbial association in 97.5%. The K. pneumoniae was associated with gram-positive (Staphylococcus spp., S. pyogenes), gram-negative (Enterobacteriacrterium spp., P. aeruginosa) bacteria, and C. albicans. According to antibiotic resistance profiles (Fig. 1), all tested strains of K. pneumoniae were susceptible to Levofloxacin and Imipenem. The biggest amount of K. pneumoniae strains were resistant to Azitromycin (9.1%). Analyses of antibiotic-resistant profile revealed that 73.2% of isolates were resistant against five or more antibiotics, and almost a quarter of strains was resistant to carbapenem (Imipenem).

The evaluation of the AgNPs antimicrobial activity against the tested strains revealed the MIC varied from 1.25 µg/ml to 2.5 µg/ml. The increase of AgNPs concentration in 2 times caused the total killing of microbes. The time-kill kinetics profile of AgNPs against K. pneumoniae at MICs demonstrates a gradual drop of the viable cells numbers over the experimental time. The numbers of bacteria cells reach 0 log10 CFU/ml to 3 h incubation (Fig. 2)
Figure 1 – *K. pneumoniae* antibiotics susceptibility profile

Examination of the antibiofilm effectiveness for AgNPs at 0.5 and 1 MIC was performed on the initial attachment and maturation stages. Evaluation of the AgNPs' ability to inhibit adhesion and a biofilm formation with *K. pneumoniae* at concentrations 0.5 and 1.0 MIC on the initial stage showed a slight decrease in the biofilm mass and quantity of living cells compared with non-treated bacteria (Fig. 3).

Figure 2 – Time-dependent bactericidal activity of the tested silver nanoparticles against *K. pneumoniae*

The effectiveness of mature *K. pneumoniae* biofilm treatment with AgNPs depended on biofilm age (Fig. 4). It was found the decrease of the biofilm mass by an average of 60% at concentration 20–40 µg/ml. However, there were no differences in *K. pneumoniae* biofilm mass and cell viability on five days biofilm.
The SEM micrographs (Fig. 5) of initial stage biofilm formation at the control group show bacteria adhering tightly to each other. Observation of the bacterial clusters at second- and fifth-day biofilm showed bacteria tethered to each other by a fibrillar network composed of copious amounts of long, flexible pili that extended several microns away from the bacteria.
The obtained micrograph indicates a considerable reduction in biofilm in the initial attachment stage. In the case of primary cocultivation of the AgNPs and *K. pneumoniae* we detected only the single bacterial cells attached to the surface. These data show that AgNPs decreased the biofilm-forming ability. It could be caused by inhibition of bacteria multiplication or bacterial adhesion.

The images of the two-day biofilm reveal lysis of the bacterial cells after the cocultivation with Ag NPs. The membrane integrity of *K. pneumoniae* was violated in the presence of AgNPs. SEM analysis detected the maintaining of the three-dimensional structure in the case of a five-day biofilm after co-cultivation with AgNPs.

Figure 5 – Scanning electron micrographs of *K. pneumonia* biofilms formed on the glass (37 °C) at different time intervals after 24 h (0d), 48 h (2d) and 120 h (5d)

K – Control, AgNPs - treated with 20 µg/ml of silver nanoparticles

This work is licensed under
Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/
Discussion. Many studies indicated the threat of antimicrobial resistance as a complex affected patients, healthcare, and economy in all countries [10]. The ESKAPE pathogens cause concern due to their capacity to escape from antimicrobial therapy, increased duration of treatment, and financial burden on public health [11]. Currently, *K. pneumoniae* is one of the most important species among gram-negative microbes of this group. In this work, we have examined the distribution of *K. pneumoniae* strains among patients with laryngeal pathology. We isolated the bacteria mostly in association from 13.7% of samples. Three-quarters of isolates were multi-resistant. Hera Nirvati et al. [12] isolated a bit higher numbers of *K. pneumoniae* (17.36%), but there was a lower level of antibiotic resistance (54.49%).

According to Hemeg [13], Ag NPs possess a greater surface area, leading to a more controlled release of Ag⁺ and could be a promising antibacterial compound. We have examined the cubic shape AgNPs on the antimicrobial activity against the multi-resistant clinical strains of *K. pneumoniae*. It was revealed the antibacterial effectiveness of AgNPs at concentration 1.25–2.5 µg/ml in 3 hours of cocultivation with *K. pneumoniae*. MIC of tested AgNPs was lower than it was reported by Pareek et al. [14].

K. pneumoniae possesses the ability to form biofilms that is central to their pathogenicity. A sticky capsule and several adhesive fimbrial or non-fimbrial adhesins are essential to biofilms formation [15]. The investigation of AgNPs anti-biofilm activity showed its slight inhibition effect on biofilm formation at initial stages. We have also detected the destruction of the mature (2 days) biofilm with Ag NPs treatment at concentrations 20–40 µg/ml. The AgNPs used in our experiment demonstrated higher effectiveness than G. Rajivgandhi et al. reported it [16], who describe the *K. pneumoniae* antibiofilm effectiveness at concentration 50–100 µg/ml. It is known that Ag NPs interact with the microbial surface and may lead to the disruption of the cell membrane. Our SEM data confirm this on a two-day biofilm, but the absence of AgNPs effectiveness was detected against a five-day biofilm. Obviously, there is a need to further investigate the mechanisms and substances that protect *K. pneumoniae* mature biofilm.

Conclusions

In this study, the distribution of the *K. pneumoniae* among patients with laryngeal pathology and its sensitivity to eleven antibiotics was examined. There was revealed the high rate (73.2%) of *K. pneumonia* multi-resistant strains. Ag NPs have strong antibacterial and antibiofilm potential against multi-resistant *K. pneumoniae*. Therefore, our results highlight that the Ag NPs have promising antimicrobial and anti-biofilm abilities against multi-resistant clinical strains of *K. pneumoniae*.

Prospects for future research

The further investigation of the AgNPs effect on the mature biofilms formed by *K. pneumoniae* will provide us with new knowledge.

References

Conflict of interest/Конфлікт інтересів
The authors declare no conflict of interest.

Acknowledgements/Підтримка
This research was supported by H2020 Marie Sklodowska-Curie Actions (NanoSurf 777926), Grant of Ukrainian-Latvian Joint Programme of Scientific and Technological Cooperation Project.
“Development of nanostructured optical sensor system for detection of *K. pneumonia*” (order №1184 from 05.11.21).

Special thank for Dr. R. Banasiuk who prepared and characterized the AgNPs.

Associated professor V. Holubnycha designed, worked and drafted the manuscript. Isolation, identification of *K. pneumoniae* from samples of patients was performed by associated professor T. Ivakhnuk. Associated professor V. Korniienko and Yu. Varava assessed the antibacterial and antibiofilm effectiveness of AgNPs against *K. pneumoniae* strains. SEM of tested microorganism after AgNPs treatment was performed by Ye. Husak.

Information about the authors/Відомості про авторів

Вікторія Миколаївна Голубнича, ORCID 0000-0002-1241-2550, доцент кафедри громадського здоро́в’я, Навчально-науковий медичний інститут, Сумський державний університет, Суми, Україна, v.golubnichaya@med.sumdu.edu.ua, тел.: +380542660948

Вікторія Володимирівна Корнієнко, ORCID 0000-0002-5144-2138, старший науковий співробітник Центру колективного користування науковим обладнанням, Навчально-науковий медичний інститут, Суми, Україна, v.kornienko@med.sumdu.edu.ua, тел.: +380542660948

Євгенія Володимирівна Гусак, ORCID 0000-0002-2217-3717, молодший науковий співробітник Центру колективного користування науковим обладнанням, Навчально-науковий медичний інститут, Суми, Україна, e.gusak@med.sumdu.edu.ua, тел.: +380542660948

Федоренко Вікторія Олександрівна, ORCID 0000-0002-8616-641X, науковий співробітник лабораторії оптичних біосенсорів і функціональних наноматеріалів, Латвійський університет, Рига, Латвія, viktoriia.fedorenko@lu.lv, тел.: +380973765747

Тверезовська Олеся Ігорівна, ORCID 0000-0003-4226-9895, аспірант кафедри громадського здоро́в’я, Навчально-науковий медичний інститут, Суми, Україна, apereshyvailo@gmail.com, тел.: +380542660948

Тетяна Василівна Івахнюк, ORCID 0000-0001-5851-2218, доцент кафедри громадського здоро́в’я, Навчально-науковий медичний інститут, Сумський державний університет, Суми, Україна, t.ivakhnjuk@med.sumdu.edu.ua, тел.: +380542660948

Юлія Валентинівна Варава, ORCID 0000-0002-1007-3743, студентка групи ЛС 611, Навчально-науковий медичний інститут, Суми, Україна, yuliia.varava@gmail.com